
Cover Story : Collections in JDK Bhaven Shah

New API framework will change the shape of Java’s data stru c t u re 8

J D J F e a t u re : E n t e r p r i s e J a v a B e a n s Liane Acker

I n c reasing portability between servers after development 1 6

Case Study: X e rox Uses Java to Cara O’Sullivan

Cut Development Time in Half
Visual Café smooths the transition to Java 3 8

Java APIs and Pro d u c t s Ajit Sagar

for Consumer Devices
P roviding a ubiquitous platform and language for communication 4 6

CORBACorner: IIOP Explained Michael Barlotta

It may be the next universal Internet protocol 5 0

Applet and Servlet Communication Chád Darby

P roviding a new way to develop serv e r-side solutions 5 6

Product Reviews
MindQ Java

by David Jung pg.30
...

Java Studio
by Dana Crenshaw pg.34

...
Optimize it!

by Achut Reddy pg.43
...

R O A D : B e a n B o x
by Ed Zebrowski pg.54

Widget Factory
J Wi z a rd

by Claude Duguay pg.22

Straight Talking
The Land of the

Rising Sun
by AlanWilliamson pg.27

The Grind
The Application

S e rver Gold Rush
by Java George pg.66

I Told You So
by Sean Rhody pg.5

Java: The Smart e r
C h o i c e ?

by Jim Redman pg.7

Volume:3 Issue:9 1998

J a v a D e v e l o p e r s J o u r n a l . c o m

PANNING FOR SERVER GOLD p. 6 6PANNING FOR SERVER GOLD p. 6 6PANNING FOR SERVER GOLD p. 6 6
TM

KL Gr oupLi veTabl e

Xerox
Success

2 • VOLUME: 3 ISSUE: 9 1998 h t t p:// w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

Full Page Ad

3VOLUME: 3 ISSUE: 9 1998 •h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

Full Page Ad

4 • VOLUME: 3 ISSUE: 9 1998 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

Full Page Ad

5VOLUME: 3 ISSUE: 9 1998 •h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

About two years ago a colleague of
mine named Joe leaned over my cubicle

wall and said, “Hey, I just downloaded this
new language called Java. It’s pretty cool!”

At the time I can’t remember being very

excited about another programming lan-
guage. I was a PowerBuilder maven and

Joe was up to his eyeballs in C++. That
probably accounts for some of my disin-

terest and Joe’s initial drooling (sorry, Joe,

but you did). Two years and one large-
scale Java project later, I’m as much a con-

vert as Joe.
That doesn’t mean I want to re b u i l d

e v e rything that’s ever been written in Java,

nor does it mean I think PowerBuilder’s
obsolete (or C++ for that matter). I re c e n t-

ly attended a conference where a technical
re p resentative from Sun was discussing

Java for the enterprise. He asked, “Where

should we use Java?” The answer was
most appropriate: “Where you need it.”

T h e re ’s nothing a client hates more
than an “it depends” answer. Unfort u-

n a t e l y, it’s often the truth. So it is with

this answer. Where you’re going to use
Java depends on your needs and strate-

gic direction. Should you use Java
e v e ry w h e re? Almost without a doubt,

no. There are things Java is good at and

things Java is not good at. There are
also practical considerations, such as

corporate infrastru c t u re, that have
nothing to do with Java’s capabilities

but impact where Java is and is not

p r a c t i c a l .
As an example of what’s not practical,

look at Corel’s attempt to re-create its
office suite in Java. In theory, Java is as

suited for this as any language, more so

than some with strong multitasking. But
this was not the right place for Java. For

one thing, you need every ounce of speed
on a machine to make these overpro-

grammed suites perform well. JIT compil-

ers notwithstanding, native code is still
faster right now.

Even worse, you know someone would
get the bright idea to host this in a brows-

er. Why buy a thousand copies when you

can access a single copy over the LAN? It’d
be a tossup as to who would shoot that

guy first – the network administrators who

were dealing with network overload or the
users who were waiting hours for their

new, “improved” software to load.
P robably the biggest lesson that needs

to be learned is that Java is part of an arc h i-

t e c t u re, not an arc h i t e c t u re unto itself. I
hear companies saying, “We’ve got to go to

Java,” and I can understand their fru s t r a-
tion and desire. The Internet has turned the

safe, known world of client/server on its

e a r, and the closest thing to a standard that
most of us can find is Java.

T h a t ’s great. I’m all for Java being the
language of the Net. It’s compact, it’s ele-

gant and it’s fun to program in. The pro b-

lem is that you can’t simply swap Java for
whatever language you’ve been doing

two-tier development in and expect to
have a solution. For one thing, JDBC is

still not as far along as ODBC or native

drivers. For another, it’s harder to pro-
vide the same rich GUI, at least on Wi n-

dows platforms. Love it or hate it, Wi n-
dows is still the overwhelming desktop

t o d a y, and we need to be able to build

better looking Java apps if Java is to
become a dominant force on those desk-

tops. Some of this is due to the bro w s e r s
rather than to the language itself. I have

to applaud the people who put HTML

together as a document language, but as
an application environment it leaves a lot

to be desire d .
So what do we do? It’s pretty simple

re a l l y. We need to put Java where it

belongs. It’s not the only tool we have,
and we must have good reasons for

selecting it over other languages and
p roducts. At the same time we need to

push for improvements in the bro w s e r s

and compilers, and hope that a JavaOS
will actually make sense, both from a pro-

grammatic and, in an era of $700 PCs, an
economic sense. Meanwhile, I need to call

Joe and tell him he was right. I hope he

d o e s n ’t rub it in.

About the Author
Sean Rhody is editor-in-chief of Java Developer's
Journal . He is also a senior consultant with Comput-
er Sciences Corporation where he specializes in
application architecture, particularly distributed sys-
t e m s. You can contact Sean at sean@sys-con.com.

I Told You So

FROM THE EDITOR

Sean Rhody, Editor- i n - C h i e f

EDITORIAL ADVISORY BOARD
Ted Coombs, Bill Dunlap, David Gee, Arthur van Hoff ,

Brian Maso, Miko Matsumura Kim Polese,
Sean Rhody, Rick Ross, Richard Soley, George Paolini

E d i t o r- i n - C h i e f : Sean Rhody

A rt Dire c t o r : Jim Morg a n
Executive Editor: Scott Davison
Managing Editor: Anita Hart z f e l d

Senior Editor: M’lou Pinkham
Editorial Assistant: Brian Christensen

Technical Editor: Bahadir Karu v
Visual J++ Editor: Ed Zebro w s k i

Visual Café Pro Editor: Alan Wi l l i a m s o n
P roduct Review Editor: Jim Mathis

Games & Graphics Editor: Eric Ries
Tips & Techniques Editor: Brian Maso

WRITERS IN THIS ISSUE
Andrei Cioroianu, Scott Davison, Claude Duguay,

George Kassabgi, Pascal Ledru, Jim Mathis,
Harlan McGhan, Lynn Monson, Jim Redman,

David Reilly, Sean Rhody, Ajit Sagar, Alan Williamson

S U B S C R I P T I O N S
For subscriptions and requests for bulk ord e r s ,

please send your letters to Subscription Depart m e n t

Subscription Hotline: 800 513- 7 1 1 1
Cover Price: $ 4 . 9 9 / i s s u e .

Domestic: $ 4 9 / y r. (12 issues) Canada/Mexico: $ 6 9 / y r.
Overseas: Basic subscription price plus air-mail postage

(U.S. Banks or Money Orders). Back Issues: $12 each

P u b l i s h e r, President and CEO: Fuat A. Kirc a a l i
Vice President, Production: Jim Morg a n
Vice President, Marketing: C a rmen Gonzalez

A d v e rtising Manager: Claudia Jung
A d v e rtising Assistants: Robin Form a

Jaclyn Redmond
A c c o u n t i n g : Ignacio Are l l a n o

Graphic Designers: Robin Gro v e s
Alex Botero

Webmaster: R o b e rt Diamond
S e n i o r Web Designer: C o rey Low

Customer Serv i c e : Sian O’Gorm a n
Paula Horo w i t z

Online Customer Serv i c e : Mitchell Lowe
Customer Service Intern s : Angela Frasco

Ann Marie Mililo

EDITORIAL OFFICES
SYS-CON Publications, Inc.

39 E. Central Ave., Pearl River, NY 10965
Telephone: 914 735-1900 Fax: 914 735-3922

S u b s c r i b e @ S Y S - C O N . c o m

J AVA DEVELOPER’S JOURNAL (ISSN#1087-6944) is
published monthly (12 times a year) for $49.00 by SYS-CON

Publications, Inc., 39 E. Central Ave., Pearl River, NY 10965-2306.
Application to mail at Periodicals Postage rates is pending at

Pearl River, NY 10965 and additional mailing offices.
P O S T M A S T E R: Send address changes to:

J AVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,
39 E. Central Ave., Pearl River, NY 10965-2306.

© COPYRIGHT
C o py right © 1998 by SYS-CON Publ i c at i o n s ,I n c. All rights re s e rve d. No part of this
p u bl i c ation may be rep roduced or transmitted in any fo rm or by any means, e l e c t ro n i c
or mech a n i c a l ,i n cluding photocopy or any info rm ation storage and re t ri eval system,

without written permission. For promotional rep ri n t s , contact rep rint coord i n at o r.
SYS-CON Publ i c at i o n s ,I n c. re s e rves the right to rev i s e, rep u blish and authori ze

its re a d e rs to use the art i cles submitted for publ i c at i o n .

ISSN # 1087-6944

Worldwide Distribution by
Cu rtis Ci rc u l a ti on Com p a ny

739 River Road, New Milford NJ 07646-3048 Phone:201 634-7400

Java and Java-based marks are t rademarks or regist ered t rade-
marks

of Sun Microsyst ems, Inc. in t he Unit ed St at es and ot her coun-
t ries.

SYS-CON Publicat ions, Inc. is independent of Sun Microsyst ems,
Inc.

All brand and
product

6 • VOLUME: 3 ISSUE: 9 1998 h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

Full Ad

7VOLUME: 3 ISSUE: 9 1998 •h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

I n f o rmation systems, meaning primarily
s o f t w a re, are increasingly seen as a competitive
weapon by which faster development and
deployment equals a business advantage. This
means more features on a shorter deadline. For
developers this can be achieved by working
h a rder or, perhaps the smarter choice, adopt-
ing Java. While some organizations reject Java
because it doesn’t have the right brand name or
they view it as a risk, a recent International Data
Corporation study re p o rts significant cost and
time savings by organizations who use it.

Of course, I didn’t really read the study
because it confirms what Java developers
a l ready know: there are solid technical re a s o n s
why Java development should be faster and
m o re robust. The developers of the language
had the advantage of history and, for the most
p a rt, picked the best of other languages and
skipped the worst. Java itself lacks many of the
“hacks” present in other languages, which
makes it easy to learn and use. The language
has evolved rapidly and well, and although it
may not be perfect, it’s good and impro v i n g .
The most fundamental pro p e rt y, ByteCode
p o rt a b i l i t y, makes building cro s s - p l a t f o rm
applications easy – a huge savings since very
few enterprises are totally homogeneous. The
I n t e rnet ancestry and network support within
Java are obvious advantages if you’re building
distributed systems. JDK and Swing provide a
f e a t u re-rich class library. Graphical layout tools
allow even those of us who are artistically chal-
lenged to create fairly good-looking user inter-
faces. Even the humble JavaDoc takes some of
the pain out of the necessary task of documen-
tation. Java 1.0 was viewed as a way to cre a t e
bouncing images on a Web site, and Java 1.1 is
a real enterprise business tool.

W h a t ’s hard to find through statistics is that
something about Java development just feels
good. Unlike other languages, coding in Java
r a rely seems to reach a point where the lan-
guage itself is the limiting factor. Part of the re a-
son for this is that at runtime the objects can
tell you about themselves. This capability is
most obvious in the concept of an “interf a c e , ”
w h e re the object is irrelevant and only the
methods matter. This “dynamic runtime” allows
you to ask objects what features they can pro-
vide while the application is running. While this
may seem trivial, it leads to the powerful com-
ponent arc h i t e c t u re of Java: JavaBeans.

JavaBeans are usually manipulated in a
graphical editor. While GUI builder capabilities
a re available in other languages, JavaBeans can
tell the development environment much more
about themselves than their simple design
p ro p e rties. Applications such as Sun’s Java Stu-
dio, combining JavaBeans and other dynamic
Java objects, allow nonprogrammers to simply

and elegantly create whole applications. In an
eerie video-gamelike world, mouse click-and-
drag maneuvers connect the on-screen dots
and build complete and powerful systems.
D o n ’t try this in other languages. In the area of
f a c t o ry automation, organizations have spent
millions of dollars largely to re - c reate, in less
dynamic languages, the capability that is avail-
able in an $89 software package, Java Studio.

Once you can ask a component about itself,
you can begin to ask for not just an object, but
for something that provides the functionality
you need. This is a subtle but important dis-
tinction because it allows greater flexibility and
removes the need to re - c reate software as
options change. A tool to “output a document”
may be a printer or a formatter and an e-mail-
e r. In an ideal environment the application
s e a rches the network for the re q u i red function-
ality and uses it. Java’s platform independence
makes this possible. This could include not
only hard w a re re s o u rces, but also sources of
i n f o rmation and even filters to analyze that
i n f o rmation. This is the essence and goal of
S u n ’s JINI technology. It’s also a logical exten-
sion of existing Java technology.

T h e re are a great many other Java ideas and
technologies either available or in pro g re s s .
Many will succeed and become so common-
place they’ll no longer appear exciting. In soft-
w a re, as in real life, imagination is limited by the
language used, so we can expect new ideas and
concepts both incremental and re v o l u t i o n a ry
that are today literally inconceivable. We ’ re
working with first-generation Java technology;
JDK 1.2 has not yet even been released. The
p ro g r a m m e r ’s toolbox for JDK 2.0 (and 3.0, 4.0,
etc.) will certainly contain items that have pre-
viously been impractical or haven’t yet been
i m a g i n e d .

Java is changing the software development
p rocess. Building the components will be the
task of the developer; building the enterprise
will be the task of a systems engineer. You may
view change as a risk, but risk is always part of
an equation that includes re w a rd, and the
re w a rds are potentially large. There ’s little
doubt that Java can provide a competitive
advantage, and that the technology will
advance in ways that traditional development
w o n ’t be able to match.

About the Author
Jim Redman is the president of ErgoTech Systems,
Inc., a company focused on developing Java applica-
tions and toolkits for plant-floor automation. This
includes links to low-level systems and hardware, and
also network links -- including CORBAsupport -- for
enterprise distribution of factory automation informa-
tion. He may be reached at JRedman@ergotech.com.

Java: The Smarter Choice?

GUEST ED ITORIAL

Jim Redman

CALL FOR SUBSCRIPTIONS

1 800 513-7111
International Subscriptions

& Customer Service Inquiries
914 735-1900

or by fax: 914 735-3922

E-Mail: Subscribe@SYS-CON.com
http://www.SYS-CON.com

MAIL All Subscription Orders or
Customer Service Inquiries to:

EDITORIAL OFFICES
Phone: 914 735-7300

Fax: 914 735-3922

ADVERTISING & SALES OFFICE
Phone: 914 735-0300

Fax: 914 735-7302

CUSTOMER SERVICE
Phone: 914 735-1900

Fax: 914 735-3922

DESIGN & PRODUCTION
Phone: 914 735-7300

Fax: 914 735-6547

WORLDWIDE DISTRIBUTION by
Curtis Circulation Company

739 River Road, New Milford, NJ 07646-3048
Phone: 201 634-7400

DISTRIBUTED in the USA by
International Periodical Distributors

674 Via De La Valle, Suite 204
Solana Beach, CA 92075

Phone: 619 481-5928

SYS-CON Publications
CONTACT ESSENTIALS

SYS-CON Publications
CONTACT ESSENTIALS

PowerBuilder Developer’s Journal
http://www.PowerBuilderJournal.com

Cold Fusion Developer’s Journal
http://www.ColdFusionJournal.com

VRML Developer’s Journal
h t t p : / / w w w. V RML D e v e l o p e r s J o u r n a l . c o m

Secrets of the PowerBuilder Masters
http://www.PowerBuilderBooks.com

Java Developer’s Journal
http://www.JavaDeveloperJournal.com

As Java matures, new sets of behavior added to its API allow
developers and programmers to write more sophisticated pro-
grams with less difficulty. This article focuses on collections API,
a new abstract data structure that will be a part of the core Java
Development Kit (JDK) 1.2 API. (The collection classes are also
available as an add-on package for the JDK 1.1 class libraries.)

Overview
An object-oriented application often consists of classes that

need to refer to a collection of values of a given type. JavaSoft
supports this capability by means of its rich set of collection
classes – abstract data types for modeling “collections” of
objects. Collections are a recent addition to the JDK. A collec-
tions API is a unified framework for representing and manipulat-
ing collections, allowing them to be manipulated independently
of the details of their representation. Some examples of collec-
tions include:
• Set: a mathematical set of elements with no duplication
• List: an ordered sequence of elements
• Map: an array of key-value pairs

• Vector: an array of elements that can grow or shrink dynami-
cally

Collections can be used to represent relationships among
objects in a data model. These relationships may be one to one,
one to many or many to many, depending on the model. While a
simple array can be used to represent a one-to-one relationship,
collections of objects are more appropriate for representing one-
to-many and many-to-many relationships. Since the JDK 1.2 is
still in beta, this article refers to the collection package released
for JDK 1.1 unless explicitly stated otherwise.

Collections Framework
The collections framework in Java is used to separate the

abstract notion of a collection of data from its data structure via
the use of interfaces. For example, consider a List interface ver-
sus a linked-list implementation. A linked list can implement a
List interface that may be used by other classes independently
of how it is implemented by the class that uses it. The advantage
of specifying interfaces in this fashion is that you can manipulate
the collections without having to know the details of how a spe-
cific collection is implemented. The primary advantages of col-
lections framework in Java can be summarized as follows:
1. Interoperability between unrelated APIs: Two different appli-

cations with an underlying data structure implemented sepa-
rately can exchange data using the collection interface API
since they both conform to the standard collections API.

2. Less effort in learning new APIs: If two applications exchange
a list of objects, the lists can manipulate each other even if
they are populated with their application-specific data objects

JDJ COVER STORY

by Bhaven Shah

The new collections API

framework will change the shape

of Java’s current data structure

8 • VOLUME: 3 ISSUE: 9 1998 h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

9VOLUME: 3 ISSUE: 9 1998 •h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

since they both conform to the same API for manipulating lists.
3 . Easier design and implementation of APIs: Application designers

using the generic API that relies on collections won’t have to start
the design of their applications from scratch every time.

4. Software reuse: Programmers can implement generic, reusable
data objects that conform to the standard collection interfaces.
These objects can also implement algorithms that operate on
collection objects independent of the details of their representa-
tion. These data objects and algorithms can be reused in differ-
ent applications.

Java Collections vs JGL and ODMG Collections
The Java collection framework is not the first abstract data

class library for Java. Java Generic Library (JGL) and Object Data-
base Management Group (ODMG) collections offer similar func-
tionality. As we focus on the advantages of the JDK collections, it
might be worthwhile to compare them with the proprietary but
powerful and widely used JGL and ODMG’s collection interfaces.
The main design goal of JGL, an already existing collection package
from ObjectSpace, was consistency with the C++ Standard Tem-
plate Library (STL). It has approximately 130 classes and inter-
faces.

The JDK collections framework, on the other hand, is meant to
be simple and lightweight. The whole collections package con-
tains about 25 classes and interfaces. So, for developers who are
used to the sophisticated JGL library, switching over to JDK col-
lections might not be very attractive. However, as the Java
libraries mature, the JDK collections library is also expected to
g ro w. In addition, the collection classes are a part of the JDK and

hence do not have to be installed separately.
The JDK collection interfaces are similar to the ODMG’s specifi-

cations (spec. 2.0) of Java interfaces released in May ’97. The Java-
Soft collection interfaces serve as the root of an interface inheri-
tance hierarchy and the ODMG interfaces are derived from them.
Again, the significant advantage of using the JDK collections is
portability, as the applications using the JDK collections won’t
have to use any other classes or libraries outside the core JDK
classes.

Collection Interfaces and Classes
The JDK Collections API consists of four core collection inter-

faces that represent different types of collections (such as sets,
lists and maps):
1. Core interfaces
2. Concrete implementations (implementations for the core col-

lection interfaces)
3. Abstract implementations (partial implementations of core col-

lection interfaces to facilitate custom implementations)
4. Some basic algorithms such as sorting arrays, lists, searching

arrays

Core Collection Interfaces
There are four core interfaces in the Java collections hierarchy.

The collection interface is the root in the collection hierarchy. Two
of the interfaces (Set and List) are children of the collection inter-
face and add more methods to it; the last interface, Map, repre-
sents a mapping of keys to values. Each interface is described in
detail below.

Collection
The collection interface represents a

group of objects that may or may not
be ord e red. The base collection is
duplicate-free and mutable. This class
provides the base interface that most
of the interfaces in the java.util.collec-
tions package extend.

Set
A set is a collection in which no

duplicate elements are perm i t t e d .
Ordering (if any) is generally estab-
lished at Set creation time.

List
If you want to use a collection that

can hold duplicate objects and have
specific ordering, you need to use this
interface (also known as a Sequence).
With it, the caller generally has precise
control over the position of each ele-
ment in the list.

Map
This interface represents a mapping

from keys to values. Each key can map
to, at most, one value. This interface
doesn’t extend the collection interface.

Concrete Implementations
Classes that provide concrete imple-

mentations for the collection inter-
faces can be used either directly or
subclassed to add additional behavior
to the collection interfaces. The impor-
tant classes in this category are:
1. HashSet: A set of classes backed by

a hash table, this serves as a good,
general-purpose Set implementa-
tion.

2. Tre e S e t: A balanced binary tre e
implementation of the Sort e d S e t
interface; unlike HashSet, a TreeSet
imposes ordering on its elements.

3. ArrayList: A resizable-array imple-
mentation of the List interf a c e
(essentially an unsynchronized Vec-
tor), this class was provided in addi-
tion to Vector for consistency in
naming and behavior.

4. LinkedList: A doubly linked List;
this class may provide better per-
formance than ArrayList if elements
are frequently inserted or deleted
within the List. It’s useful for queues
and double-ended queues (deques).

5. Vector: The new Vector class is a
synchronized, resizable-array imple-
mentation of a List with additional
“legacy methods” from the existing
J D K 1 . 1 ’s java.util.Vector class.
Changed from the legacy Ve c t o r
class in JDK, the java.util.Ve c t o r
class in JDK1.1 currently extends

java.lang.Object class. The new collec-
tions-based Vector class extends
java.util.collections.AbstractList class
(which in turn extends from java.util.col-
lections.AbstractCollections class) and
implements java.util.collections.List
interface.

6. HashMap: A hash table implementation
of the Map interface (essentially an
unsynchronized Hashtable), the class is
provided in addition to the Hashtable,
for consistency in naming and behavior.

7. TreeMap: A balanced binary tree imple-
mentation of the SortedMap interface;
unlike HashMap, it imposes ordering on
its elements.

8. Hashtable: A synchronized hash table
implementation of the Map interf a c e
with additional “legacy” methods from
the existing JDK1.1 java.util.Hashtable
class. Changed from the existing
Hashtable class in JDK, the Hashtable
class currently extends java.util.Dictio-
n a ry class. The new Hashtable class
implements Map interface in addition to
extending the Dictionary class. Also, in
the new Hashtable implementation any
non-null object can be used as a key or
as a value, unlike the previous imple-
mentation of Hashtable.

Anonymous Implementations
The new collections framework pro-

vides java.util.collections.Collections class,
which has implementation methods
accessed solely through public static facto-
ry methods. This allows any arbitrary algo-
rithmic operations on collections.

Views
The collections framework pro v i d e s

users with the flexibility to work with either
the actual collections (where they can per-
form read-write operations) or just a view
of the collection (where they can perform
only read operations), depending on the
application needs. For example, the
java.util.collections.Collections has meth-
ods like unmodifiableCollection (Collection
c), which returns a view of the collection c
backed by the original collection that was
passed in. Other similar methods are
unmodifiableCollection, unmodifiableSet,
unmodifiableList, unmodifiableMap and
unmodifiableSortedSet. All these methods
return an unmodifiable view of a specified
collection that throws an UnsupportedOp-
erationException if the user attempts to
modify.

Abstract Implementations
The classes in this category provide a

skeletal implementation for the core collec-
tion interfaces to minimize the eff o rt
required to implement them. The JavaDocs

h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

New JDK collection interface hierarchy

java.util.collections.Collection class

java.util.collections.List class

10 • VOLUME: 3 ISSUE: 9 1998

java.util.collections.Set class

11VOLUME: 3 ISSUE: 9 1998 •h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

Ad

h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

API documentation for these classes
describes precisely how each method
is implemented so the implementers
will know which methods should be
overridden, given the performance of
the “basic operations” of a specific
implementation. Following are some of
the key abstract collection classes:
1. AbstractCollection: This class pro-

vides a skeletal implementation of
the collection interface. The imple-
mentation of this class is neither a
Set nor a List, but a general-purpose
collection.

2. AbstractSet and AbstractMap:
This class provides a skeletal imple-
mentation of Set and Map inter-
faces.

3. AbstractList: This class provides a
p a rtial implementation of a List
backed by a random-access Data-
Store (such as an array).

4. Comparator: This class represents
an order relation that may be used
to order a collection or sort an
a rr a y. Comparator may be used
instead of a Comparable type’s nat-
ural ordering or to order elements
of a type that does not implement a
Comparable interface.

5. SortedSet: This class represents a
Set whose elements are automati-
cally sorted, either in their natural
ordering or by a Comparator pro-
vided at SortedSet creation time.

6. SortedMap: This class represents a
Map whose mappings are automati-
cally sorted by key, either in the
key’s natural ordering or by a Com-
parator provided at SortedMap cre-
ation time.

Algorithms
The new JDK collections package

provides algorithms that operate on
collections, their views and wrappers.
The algorithms are provided in the
java.util.collections.Collections class,
which has several public static meth-
ods that operate on collections or
return collections. Some of the impor-
tant algorithms are described below:
1 . C o l l e c t i o n s . s o rt (L i s t) : S o rts a List

using a merge sort algorithm that
p rovides average-case perf o rm a n c e
comparable to a high-quality quick-
s o rt, guaranteed O(n*log n) perf o r-
mance (unlike quicksort) and
stability (unlike quicksort). (A stable
s o rt is one that does not re o rd e r
equal elements.)

2. C o l l e c t i o n s . b i n a ry S e a rc h (L i s t) :
S e a rches for an element in an
ordered List using the binary search
algorithm.

3. C o l l e c t i o n s . m i n (C o l l e c t i o n) / C o l l e c -
tions.max(Collection): Returns the min-
imum/maximum element in a Collection.

4 . I t e r a t o r s : In addition to the Vector and
Hashtable changes, one of the main
changes in the JDK data stru c t u res is the
collection framework’s new Iterator inter-
face, which is useful for iterating over the
Collection objects. The Iterator diff e r s
f rom the existing Enumeration class in
JDK with respect to its additional power
to modify the collection while iterating
over it. For example, you can remove ele-
ments from the backed collection while
iterating over it. In addition, Iteration is
extended to provide ListIterator interf a c e
that provides easier bidirectional itera-
tion over lists. Enumeration will remain a
p a rt of the java.util package, mainly for
the backward compatibility with the lega-
cy JDK API.

The following code snippet demon-
strates the use of Iterators. Vector v has
already been created and populated with
data objects:

Iterator i = v.iterator();

while (i.hasNext())

{

Integer intObj =

(I n t e g e r) i . n e x t () ;

System.out.println("Integer value:

" + intObj.intValue());

// remove this element from the

collection using Iterator

i . r e m o v e () ;

}

Another main feature of the collection
framework is the synchronized collection
wrappers: java.util.collections.Collections
class provides methods to obtain synchro-
nized wrappers backed by standard (typi-
cally unsynchronized) collection. This
allows programs to carry out thread-safe
(synchronized) operations on the collec-
tion objects.

The new JDK collection implementa-
tions are unsynchronized (with the excep-
tions of the Hashtable and Vector classes),
but may be synchronized externally with
synchronizing wrappers. All have fail-fast
iterators that throw a runtime exception in
response to concurrent modification of the
backing collection rather than behave non-
deterministically.

Sample Example Using
Collections API

Listing 1 indicates how collection class-
es can be used to represent and manipulate
data in a simple but efficient manner. This
example demonstrates some of the features
of the new collection-based Vector class

java.util.collections.Map class

AbstractList extends AbstractCollections and implements

new Hashtable hierarchy

java.util.collections.Collections class

• VOLUME: 3 ISSUE: 9 199812

13VOLUME: 3 ISSUE: 9 1998 •h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

Ad

and Comparator interface. The example
creates a Vector and fills it up with integers.
It then obtains an array representation of
these elements by calling toArr a y ()
method, performs a sorting operation using
the Comparator interface and, at the end,
demonstrates how to use the Iterator to
retrieve each element of the vector and
how to remove elements from the collec-
tion using the Iterator.

Here is the output obtained by running
the example code in Listing 1:

$ java Demo

Given Vector before sorting:

20, 500, 400, 100, 300,

Sorted vector after modifying the array:

20, 100, 300, 400, 500,

Vector using Iterator:

20, this element has been removed from the

v e c t o r

100, this element has been removed from the

v e c t o r

300, 400, 500,

$

Using Collections with
JDK 1.1.x and 1.2
With JDK 1.1.x

The collections framework API has been

released as an add-on for the preexist-
ing JDK 1.1 API. The collection classes
in the add-on package are direct copies
of JDK 1.2 counterparts and differ only
in their package names. The APIs are
identical with one significant excep-
tion: as they are in different packages,
they are distinct Java types and cannot
be cast/assigned between each other.

If re q u i red, however, source code
using the 1.1 APIs can be easily
(mechanically) ported to use the JDK
1.2 counterparts. The 1.1 collection
classes packaged under com.sun.
java.util.collections are curre n t l y
available as a separate download fro m
the core JDK 1.1 API at JavaSoft’s We b
s i t e .

With JDK 1.2
In JDK 1.2 the collections API frame-

work will be part of the core Java API
and packaged under java.util package.
This package is available today with
beta releases of JDK 1.2. This means that
if you use the collection package with
JDK 1.1.x, you’ll be importing collection
classes using import statements similar
to the one used in Listing 1. When you
move your application to JDK 1.2 later
on, all you do is change these import
statements to import java.util classes.

Providing Implementation for
Collection Interfaces

If you’re implementing any of the collec-
tion interfaces, keep in mind that all gener-
al-purpose collection implementation class-
es should provide two “standard ”
constructors:
• A void (no arguments) constru c t o r,

which will create an empty collection
• A constructor with a single argument of

type Collection, which will create a new
collection with the same elements as its
argument

The latter constructor allows users to
copy any collection, producing an equiva-
lent collection of the desired implementa-
tion type. For example, all general-purpose
Map implementations should provide a
void (no arguments) constructor and a con-
structor that takes a single argument of
type Map.

Migrating to the New Collections
API Using JDK 1.1

W h a t ’s the impact of changing your
existing Java data stru c t u res to the new
collection-based data stru c t u res? Let’s
see what’s re q u i red to migrate your appli-
cation so as to use the new collection
i n t e rfaces and classes for JDK 1.1. The
steps are given below:

1. Download the new Collections.zip for the
JDK 1.1.x.

2. Add the collections.zip archive to your
CLASSPATH.

3. Replace java.util.Enumeration with com
.sun.java.util.collections.Iterator.

4. Change package names of the classes you
wish to change to the new collection-
based classes (e.g., replace java.util.Vec-
tor with the new com.sun.java.util.collec-
tions.Vector) and change the correspond-
ing method calls in these classes.

5. Applets or applications packaged as JAR
files to be used in Web pages should ref-
e rence or include the collections.zip
archive in their packaging or CODEBASE.
This will ensure that the implementation
is available upon download to the brows-
er environment.

Conclusion
J a v a ’s collections framework pro v i d e s

easier and more powerful use of its data
s t ru c t u res than ever before. It greatly facil-
itates writing programs involving numeri-
cal calculations and algebraic operations,
and as the framework matures we can
expect solutions for more complex math-
ematical problems. Whether JavaSoft will
p rovide any mechanism for eff i c i e n t l y
passing collection objects using RMI in a
distributed environment remains to be
seen, but you can always count on Java-
Soft!

Resources – URLs
1. JavaSoft: www.javasoft.com
2.JDK 1.1 download: Java.sun.com/prod-

ucts/jdk/1.1
3.Collections API download for JDK 1.1:

java.sun.com/beans/infobus/index.html#
COLLECTIONS

4. JDK 1.2 download:
www.javasoft.com/products/jdk/1.2/
index.html

5.ODMG: www.odmg.org
6.JGL: www.objectspace.com

About the Author
Bhaven Shah, a member of the technical staff at i2
Technologies in Dallas, Texas, has a BS and an MS
in computer science. His four years of programming
experience include two years of Java and CORBA
development. His focus is on GUI, client/server and
distributed software development. Bhaven can be
reached at bshah@i2.com.

14 • VOLUME: 3 ISSUE: 9 1998 h t t p:// w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

bshah@i2.com

java.util.collections.AbstractCollection class

java.util.Collections.Iterator class

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

15VOLUME: 3 ISSUE: 9 1998 •h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

Ad

16 • VOLUME: 3 ISSUE: 9 1998 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

by Li ane Acker

Developing and maintaining distributed business applications is
h a rd. As if writing business logic were n ’t hard enough, enterprise
application developers have also been saddled traditionally with the
daunting task of implementing transaction management, persistent
state management, thread safety, re s o u rce pooling, security, distrib-
ution and life cycle/location of business objects. This makes enter-
prise application development more time-consuming and costly, and
re q u i res a broad range of expertise from the development team.

Once an enterprise application has been developed, using its
code across other business applications becomes difficult because:
(1) business logic is mixed with code to manage transactions, per-
sistence, security and re s o u rces; and (2) other applications may
employ diff e rent programming models. Ideally, one would like to
reuse business logic as much as possible to ensure consistency of
business rules across a company’s applications.

Likewise, it’s difficult to reuse code across platforms, serv e r s

and backing stores (e.g., databases) when the business application
contains low-level API calls that are specific to a particular platform
or product. Portability across platforms is particularly desirable
when you want to support client access from customer systems.
P o rtability across server and database products allows an applica-
tion to be migrated to higher-end systems as the business gro w s
and its needs change.

Enterprise JavaBeans is a new specification from Sun Micro s y s-
tems that aims to simplify the development, maintenance and code
reuse of multitier enterprise business applications. Enterprise Java-
Beans (EJB) is, foremost, a component model; that is, it facilitates
reuse of software building blocks (components). A component
model specifies the way a component interacts with its enviro n-
ment and other components, and offers programmers guidelines for
building components so they can be dynamically composed with
other components.

Increasing portability between servers after

enterprise application has been developed

JDJ FEAT U R E

Indust rial St rength

17VOLUME: 3 ISSUE: 9 1998 •h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

Enterprise JavaBeans is an object-orient-
ed component model that focuses on the
development and packaging of multitier
enterprise Java applications. Like Java-
Beans components, Enterprise JavaBeans
a re objects that can be used without sourc e
code because they can be customized
t h rough their external pro p e rties. Unlike
JavaBeans components, Enterprise Java-
Beans are always accessed re m o t e l y, as part
of a distributed, multitier application. Such
an application is typically characterized by
a thin client (one containing only pre s e n t a-
tion logic) accessing remote business
objects. The business logic and data access
logic reside on one or more servers. The
benefits of multitier applications include
s c a l a b i l i t y, perf o rmance, reliability and flex-
ibility; such applications are well suited to
high-volume business transactions and
Web-based business applications. Because
the client contains only presentation logic,
multitier applications can support a wide
variety of client devices.

Goals of the Enterprise JavaBeans
S p e c i f i c a t i o n

A major goal of the EJB specification – to
simplify the programming model for distrib-
uted enterprise applications – is accom-
plished in four ways:
1 . EJB is based on the Java pro g r a m m i n g

l a n g u a g e .
2 . I t ’s also based on the JavaBeans compo-

nent model, an easy-to-use pro g r a m m i n g
model that relies on simple pro g r a m m i n g
and naming conventions for creating
reusable, portable, customizable Java com-
ponents. Enterprise JavaBeans are special,
nonvisual JavaBeans that run on a serv e r.

3. EJB includes a set of high-level APIs for
transaction, security and persistence
management; these APIs must be support-
ed by an EJB-compliant server pro d u c t .

4 . The EJB programming model allows the
p rogrammer to focus on the business logic
rather than coding thread safety, concur-
re n c y, re s o u rce pooling, security checking
and transaction management. The EJB-
compliant server product is re q u i red to
p e rf o rm these services automatically on
behalf of the Enterprise JavaBean.

A second major goal is to enable re u s e .
EJB inherently enables reuse across appli-
cations because it’s based on an object-ori-
ented programming language (Java) and a
component model (JavaBeans), and it inher-
its the cro s s - p l a t f o rm portability of Java.
EJB goes furt h e r, however, enabling re u s e
a c ross servers, transaction managers, data-
base products and application-assembly
tools. It does this by standardizing – and
requiring servers to automate – serv i c e s
like transactions, security and persistence.

Each Enterprise JavaBean is re q u i red to
implement certain interfaces so as to allow
the server to manage it, and the server is
re q u i red to give the Enterprise JavaBean
c o n t rol at certain well-defined execution
points. This programming model allows the
p rogrammer to isolate the business logic,
yielding greater port a b i l i t y.

A third major goal of the EJB specifica-
tion is to support heavy-duty business
applications – those that are distributed,
scalable, transactional, multiuser, secure ,
persistent, flexible, high-perf o rmance and
C O R B A - i n t e roperable. CORBA is an indus-
t ry - s t a n d a rd arc h i t e c t u re published by the
OMG consortium for distributed, cro s s - l a n-
guage object servers. Because EJB is
C O R B A - i n t e roperable, Enterprise JavaBeans
can be hosted in CORBA servers and

accessed by non-Java clients or by ActiveX
clients using a COM-CORBA bridge. CORBA
i n t e roperability will be achieved by enhanc-
ing Java RMI to communicate using a
CORBA-compliant wire protocol called IIOP.
This enhanced implementation of RMI is
typically called “RMI over IIOP. ”

Enterprise JavaBeans Arc h i t e c t u re
F i g u re 1 illustrates the processes (shown

as boxes) and objects (shown as ovals) that
exist at runtime in an Enterprise JavaBeans
application. The client application pro c e s s
contains only presentation logic and stubs
to remote business logic objects. As in Java
RMI, the client code interacts with the stubs
as if they were local objects, and the stubs
p resent the same interface to the client as
the remote business objects.

The EJB server process hosts one or more
EJB containers. An EJB container provides the
application context for Enterprise JavaBeans,
management and control services, and man-
ages security, distributed transactions and
state persistence for them. It is expected that
each EJB-compliant server product will pro-
vide at least one EJB container.

Each container hosts one or more EJB-
Home objects that manage a single class of
Enterprise JavaBeans. An EJBHome pro-
vides a remote interface that client applica-
tions can use to create new (or find existing)
Enterprise JavaBean instances of the class
that it manages. An EJBHome also pro v i d e s
a naming context for the Enterprise Java-
Beans that it manages. This means that
client applications can use the Java Naming
and Dire c t o ry Interface (JNDI) to look up
the EJBHome in the namespace – without a
priori knowledge of where in the network its
s e rver resides – to obtain a stub to the EJB-
H o m e .

For each Enterprise JavaBean instance
residing in the serv e r, there is a corre-
sponding object called an EJBObject, which
re p resents the client view of the Enterprise

JavaBean. It provides a remote interf a c e
consisting only of the Enterprise JavaBean’s
business methods, which a client applica-
tion invokes via a stub to the EJBObject.
The EJBObject’s role is to intercept all client
requests (even those coming from other
EJBs residing in the same server) so that
qualities of service for transactions, securi-
ty and so forth can be maintained transpar-
ently to both the EJB and its client. When
the EJBObject receives a business method
invocation, it delegates to the business logic
implemented in the Enterprise JavaBean.

Of all the runtime objects shown in Fig-
u re 1, only the Enterprise JavaBean is imple-
mented by the developer. The re m a i n i n g
object implementations are generated by
the server/container pro d u c t ’s EJB deploy-
ment tools. This gives the developer a sim-
ple programming model, one that allows the
business logic to be isolated and hence
p o rtable across EJB server pro d u c t s .

Session Beans vs Entity Beans
The Enterprise JavaBeans specification

gives the developer flexibility by support i n g
multiple types of components. One distinc-

“ The creat ion and f inder met hods can
t ake arbit rary paramet ers, except t hat
one f inder met hod is required t o t ake
an inst ance of t he bean’s primary key

class as input , and t hey must bot h
ret urn an inst ance of t he bean’s

18 • VOLUME: 3 ISSUE: 9 1998 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

tion made in the specification is between
session beans – transient, nonre c o v e r a b l e ,
u n s h a red components that re p resent opera-
tions to be perf o rmed on behalf of a client –
and entity beans – persistent, re c o v e r a b l e ,
s h a red components that typically re p re s e n t
data backed by a database or other backing
s t o re, identified by a unique primary key.

A session bean exists (logically) for the
duration of a single client/server session
dedicated to one client. Although these
beans can access and update a persistent
s t o re, they typically do not, and the con-
tainer provides no support for session bean
persistence other than notifying the bean of
transactional boundaries. Session beans are
typically either stateless service pro v i d e r
components or components that maintain
conversational states with a part i c u l a r
client. The container is re q u i red to manage
the conversational state of a session bean,
saving it if the bean is passivated by the

s e rver and restoring it when the bean is
re a c t i v a t e d .

Another distinction made in the specifi-
cation is between container-managed and
bean-managed entity beans. The distinction
refers to how the persistent state of the EJB
is managed. The former implementation
contains no code to open, access or update
a backing store; the container is re s p o n s i b l e
for managing the persistent store on behalf
of the bean. This would include, for
instance, reading a row in a relational data-
base in order to initialize the bean’s con-
t a i n e r-managed fields and updating the
database before passivating the bean. When
deploying a container-managed entity bean
to run in a particular server/container pro d-
uct, one would use the deployment tools
p rovided by the product to describe the

mapping between the persistent store (e.g.,
a relational database table’s columns) and
the bean’s container-managed public fields.
By contrast, a bean-managed entity bean
p e rf o rms all of its own persistent data man-
agement. This might be useful when the
bean accesses legacy data in a backing store
not supported by the serv e r / c o n t a i n e r
p roduct on which the bean is deployed.

In addition to persistent storage manage-
ment, EJB-compliant server/container pro d-
ucts are also responsible for providing ser-
vices such as life-cycle management, con-
c u rre n c y, distribution, exception handling,
transactions and security.

Writing an Enterprise JavaBean
To write an Enterprise JavaBean, the

developer must write two Java interf a c e s
and one Java class. The two interfaces pro-
vide the client view of the Enterprise Java-
B e a n ’s EJBObject and EJBHome; the class

p rovides the business logic (the bean imple-
mentation). Listing 1 shows two interf a c e s
one might write for an entity bean re p re-
senting a hotel room re c o rd in a database.
The bean’s remote interface, HotelRoom,
must extend the EJBObject interface fro m
the java.ejb package (a package intro d u c e d
by the EJB specification). The bean’s home
i n t e rface, HotelRoomHome, must extend
the javax.ejb.EJBHome interface. Both
javax.ejb.EJBObject and javax.ejb.EJBHome
extend the java.rmi.Remote interface, mean-
ing that these interfaces can be invoked
remotely via a stub. Because they are
Remote interfaces, every method must
include the java.rmi.RemoteException in its
t h rows clause, as well as other application-
specific and EJB-specific exceptions.

The bean’s remote interface (extending

javax.ejb.EJBObject) includes all – and only
– the business methods that the bean
exposes to client applications. For example,
a HotelRoom EJB might provide a method to
re s e rve the hotel room it re p resents for a
specified number of days. The bean’s home
i n t e rface (extending javax.ejb.EJBHome)
p rovides methods of two kinds: cre a t i o n
methods (which must be named “cre a t e ”)
and finder methods (which must begin with
“find”). Finder methods are allowed only on
the home interfaces of entity beans, not ses-
sion beans. The creation and finder meth-
ods can take arbitrary parameters, except
that one finder method (named findByPri-
m a ryKey) is re q u i red to take an instance of
the bean’s primary key class as input. The
c reation and finder methods must re t u rn an
instance of the bean’s remote interface (or
finder methods can re t u rn a collection of
i n s t a n c e s) .

Listing 2 shows the bean implementation
that one might write, corresponding to the
i n t e rfaces shown in Listing 1. The bean
class must implement either the
javax.ejb.EntityBean or the javax.ejb.Ses-
sionBean interface. This example shows an
entity bean; the details of writing a session
bean vary slightly.

The bean implementation contains four
kinds of items. First, the bean implements
all the business methods from the corre-
sponding EJBObject interface. Second, the
bean implements methods from the Entity-
Bean (or SessionBean) interface. These
methods exist primarily to allow the bean to
get callbacks at certain execution points;
the bean developer is not re q u i red to do
anything in these methods. The exception is
that when developing a bean-managed enti-
ty bean, the bean developer must perf o rm
the appropriate backing-store synchro n i z a-
tion in the ejbLoad, ejbStore and ejbRemove
m e t h o d s .

T h i rd, for each create method in the
b e a n ’s home interface, the bean must imple-
ment a corresponding ejbCreate and ejb-
P o s t C reate method, and its parameters
should match the create method. For a con-
t a i n e r-managed entity bean, the ejbCre a t e
method re t u rns void, and is responsible for
initializing the bean instance’s container-
managed public fields based on the input
parameters. (The container is re s p o n s i b l e
for later updating the backing store based
on the instance’s field values.) For a bean-
managed entity bean, the ejbCreate method
re t u rns a primary key value computed fro m
the input parameters, and is responsible for
initializing the bean’s fields and updating
the backing store. The ejbPostCre a t e
method for both kinds of entity beans
re t u rns void; it allows the bean developer to
p e rf o rm postcreation computation, but
often it would do nothing.

Figure 1: Processes and objects that make up an Enterprise JavaBeans application

19VOLUME: 3 ISSUE: 9 1998 •h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

Ad

20 • VOLUME: 3 ISSUE: 9 1998 h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

For bean-managed entity beans only, for
each finder method in the bean’s home
i n t e rface, the bean must implement a corre-
sponding ejbFind method, with parameters
that match the home’s finder method. The
ejbFind method must compute and re t u rn a
p r i m a ry key value based on the input para-
m e t e r s .

F o u rth, a container-managed entity bean
exposes its container-managed data as pub-
lic fields. The container is responsible for
reading and writing these fields as it
updates and accesses the backing store .

Notice that the EJB implementation need
not contain any code to access a backing
s t o re, manage transactions, impose security
constraints or ensure thread safety. The ser-
vices provided by the serv e r / c o n t a i n e r
allow the developer to focus almost entire l y
on the application’s business logic.

The Enterprise JavaBean developer
finally packages the two interfaces and one
class that constitutes the EJB into a special
kind of zip file called an ejb-jar. The ejb-jar
also contains other classes on which the
bean depends: a manifest file that
describes the ejb-jar’s contents and a seri-
alized deployment descriptor object. The
deployment descriptor indicates what ru n-
time services the bean re q u i res from the
s e rver/container and how the container
should manage the bean, particularly with
respect to life cycle, persistence, transac-
tions and security. The environment pro p-
e rties embedded in the deployment
descriptor allow an application developer
to customize the bean for a specific use.
For instance, environment pro p e rt i e s
might indicate the name of a database to
be used by a bean-managed entity bean, or
indicate the JNDI names of other EJBs that
it uses.

Writing an Enterprise JavaBeans
Client Application

Listing 3 shows pseudocode that illus-
trates how one would write client code to
remotely access an Enterprise JavaBean
and its home. (The requisite exception-

handling code is omitted for bre v i t y.) The
client application programming model
illustrated would also apply when one
Enterprise JavaBean is using another Enter-
prise JavaBean.

First, the client application must locate
the bean’s home object, using JNDI. To do
so, the client application must have the
b e a n ’s JNDI name, which it could obtain
dynamically from a pro p e rty setting. The
client initializes JNDI by creating a
javax.naming.InitialContext object, perf o rm s
a JNDI lookup, passing the bean’s JNDI name
(e.g., “applications/hotel/rooms”), then nar-
rows the re t u rn value to an instance of the
b e a n ’s home interface. (Think of a narro w
operation as a typecast that works on
remote objects.) The result is an RMI stub to
the bean’s home object, residing in a serv e r
s o m e w h e re on the network.

Second, the client application uses the
b e a n ’s home to create a new bean instance
or find an existing bean instance in the serv-
er where the home object resides. For enti-
ty beans, creation results in adding new
data to the persistent store; finding simply
activates (if necessary) a new instance of
the bean class to re p resent data that
a l ready exists in the persistent store. Hence,
client applications typically use a home’s
c reate methods when working with session
beans and a home’s finder methods when
working with entity beans. The result of
invoking a creation or finder method on the
home stub is another RMI stub, an RMI stub
to the bean’s EJBObject.

T h i rd, the client application invokes
business methods on the bean’s EJBObject
via the stub re t u rned by the home. This is
done exactly as if the bean implementation
w e re being used as a local object, except
that the client application must always be
p re p a red to catch a java.rm i . R e m o t e E x c e p-
t i o n .

When the client application finishes
using the bean, it will sometimes want to
remove it. For an entity bean, removing the
bean results in removing data from the per-
sistent store .

As this is typically not desired, the
remove method is usually invoked only
when using session beans. When a client
application is finished using an entity bean
whose persistent data should remain in the
backing store, the client application need
not perf o rm any action to release the bean
other than allowing the local stub object to
be garbage-collected. (This is true of the
home object also.) It is the serv e r ’s re s p o n-
sibility to eventually passivate the object in
the server and allow the bean to be garbage-
c o l l e c t e d .

C o n c l u s i o n
The Enterprise JavaBeans specification

has received broad industry support. Major
vendors, such as IBM, Oracle, Sybase and
Netscape, have participated in the specifi-
cation, and many more vendors plan to sup-
p o rt EJB in their server and transaction-
monitoring products. Because EJB was
designed to be compatible with existing
p roducts, support for EJB should roll out
r a p i d l y. Several companies demonstrated
early EJB support prototypes at the
JavaOne conference in March, just weeks
after the EJB 1.0 specification was pub-
lished. One such company was IBM, which
announced that they plan to support EJB
a c ross their software middleware and appli-
cation servers, including Component Bro-
k e r, TXSeries, CICS/390, MQSeries, DB/2, IMS
and Lotus Domino, and that EJB is a key ele-
ment of IBM’s Network Computing Frame-
work.

About the Author
Liane Acker develops Enterprise JavaBeans server run-
time and tool technology for IBM. She has worked in
the areas of object-oriented and distributed program-
ming for six years, with particular focus on CORBA,
JavaBeans and Enterprise JavaBeans. In 1992 she
received her Ph.D. in computer science from the
University of Texas at Austin. Liane can be reached
at lacker@us.ibm.com.

lacker@us.ibm.com

public interface HotelRoom

extends javax.ejb.EJBObject {

public void reserve (int numberOfDays)

throws java.rmi.RemoteException;

// <more business methods only>

}

public interface HotelRoomHome

extends javax.ejb.EJBHome {

public HotelRoom create (RoomIdentifier roomNo)

throws java.rmi.RemoteException,

j a v a x . e j b . C r e a t e E x c e p t i o n ;

public HotelRoom findByPrimaryKey

(RoomIdentifier roomNo)

throws java.rmi.RemoteException,

j a v a x . e j b . F i n d e r E x c e p t i o n ;

// <more create or find* methods only>

}

✦ LISTING 1.

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

21VOLUME: 3 ISSUE: 9 1998 •h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

Ad

22 • VOLUME: 3 ISSUE: 9 1998 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

User interface design can be a real stru g-
gle when one of the re q u i rements is to make
p rograms accessible to a larger market. The
most suitable metaphor for a given domain
may not be simple enough for inexperienced
users, yet the program still has to addre s s
their needs. If you can explicitly lead users
t h rough each step and get them to their
objective, their net experience is usually pos-
itive. This month we’ll build a framework you
can use to develop your own sophisticated
Java wizard s .

Basic Design
F i g u re 1 shows a screen shot of the JWi z-

a rd class in action. The Wi z a rdImage panel
on the left is responsible for displaying an
image, border and the basic spacing. The
buttons and beveled line above them are
p a rt of the Wi z a rdNavigator panel. The re s t
of the display changes as you move forw a rd
or backward, and is contained by a panel
that uses the DeckLayout (a layout manager
that works like the familiar CardLayout, but
o v e rcomes fundamental focus management
p roblems by disabling components when
they are made invisible).

The JWi z a rd framework design lets you
d rop components, usually JPanel objects, in
o rder and then manage the sequence more
e x p l i c i t l y. It uses a Wi z a rd S e q u e n c e M a n a g e r,
which implements the SequenceMan-
ager interface. Since Wi z a rds typical-
ly collect some kind of data, we
implement a DataCollectionModel
i n t e rface to store results (our default
being a Pro p e rtyDataModel derived
f rom Pro p e rties). Both the Sequence-
Manager and DataCollectionModel
can be replaced by other implemen-
tations if you choose.

We also implement a Wi z a rd Va l-
idator interface that lets you contro l
whether the user can move forw a rd
or backward at any given point, sup-
p o rting dynamic data validation on
each panel. When changes are made
to the DataCollectionModel, the JWi z-
a rd framework is notified and checks

the current panel through this interface to
decide whether it needs to update the button
status. If the user can’t move forw a rd and/or
b a c k w a rd, the button(s) are disabled.

The Wi z a rdPanel implements most of the
page mechanics and was designed to be sub-
classed. It lets you create the larger under-
lined title and explanation text by default,
though you can set one or both of these val-
ues to null for more control. The Wi z a rd P a n-
el implements the Wi z a rd Validator interf a c e
and provides a few utility methods that make
development easier.

Quick To u r
It may seem complicated to have a data

model, sequence manager and validator
i n t e rface, but the benefits are obvious when
you start building with JWi z a rd. Here ’s a
quick example of how it works in practice. We
collect some personal information and ask a
simple question before producing a re s u l t
panel. The logic for this simple application
could become complicated if the framework
d i d n ’t handle it well. The flow from one panel
to the next is shown in Figure 2.

The first panel collects information and
registers itself as a DocumentListener for
each of the JTextField objects in order to
update the data model as changes are made.
Since InformationPanel is a subclass of Wi z-

a rdPanel, we can call getDataModel() to get
the model and the setValue method to update
changes. The event handler calls the model’s
h a s Value method to determine if a field has
content. In this example, if all three fields
have data, the canMoveForw a rd flag is set to
t rue. When the model changes, it notifies the
framework, which then checks the Wi z a rd Va l-
idator interface to activate the button(s) as
a p p ropriate. The Next button becomes active
only if all three fields have content.

The second panel sets up six JRadioBut-
ton objects, makes them part of the same
button group and registers itself as an
ActionListener for each button. When a but-
ton is pressed, the FavoritesPanel calls the
Wi z a rdPanel superclass method getManager
to get the SequenceManager, and then sets
the next panel with the setNext method. At
the same time, it sets the subsequent panel’s
next value to a null (“ ”) string, which indi-
cates a final panel in the sequence. When
J Wi z a rd sees this, it replaces the Next button
with a Finish button.

At the end of this sequence, if you pre s s
the Finish button, it will print out the Pro p e r-
tiesDataModel so you can see what you’ve
collected. You can find all this code on the
J D J Web site (www.sys-con.com), along with
the source for the entire JWi z a rd framework.
To try this example, just run the JWi z a rd Te s t
c l a s s .

Stacking the Deck
The DeckLayout and DeckPanel classes

a re fairly simple. The DeckLayout is similar
to the CardLayout manager that
comes with JDK, updated to elimi-
nate deprecated calls and extended
to handle focus traversal pro p e r l y.
Listing 1 presents the show method,
which lets you select an active page,
and the setActive method, which is
s h a red by all page-switching calls.
The setActive method enables or
disables components and their chil-
d ren, and also makes them visible or
invisible depending on the Boolean
a rgument. The show method looks
for and disables the active page
b e f o re activating a new page.

Listing 2 shows a couple of calls
f rom the DeckPanel class. In part i c u-
l a r, the addPanel method automati-Figure 1: Favorite Language

Everything should be as simple as

possible, but no simpler. –Albert Einstein

by Cl aude Duguay

23VOLUME: 3 ISSUE: 9 1998 •h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

Ad

24 • VOLUME: 3 ISSUE: 9 1998 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

cally sets the sequence manager to the ord e r
in which panels are added. The first panel is
set as the first active panel in the sequence;
all others are set as subsequent to the pre v i-
ous panel. This simplifies the most common
case and allows changes to be made to the
sequence manager at runtime. The DeckPan-
el keeps re f e rences to the DeckLayout and
S e q u e n c e M a n a g e r, which are both used in
the setPanel method. Only DeckPanel access-
es the DeckLayout manager dire c t l y.

The SequenceManager interface is pre-
sented in Listing 3. Page names are used to
keep things simple. The concrete implemen-
tation keeps track of the first and curre n t
positions, and holds two Hashtables that
associate a given key with the next and pre-
vious pages, re s p e c t i v e l y. Listing 4 shows the
member variables, as well as the getNext and
setNext methods, for the Wi z a rd S e q u e n c e -
M a n a g e r. Before setting a sequence pair, we
always remove any previous links. The JWi z-
a rd class lets you retrieve and set the
sequence manager with the getManager and
setManager methods.

Validated Modeling
Wi z a rds typically collect some kind of infor-

mation and then act on it. To make it as easy as
possible to collect various kinds of inform a-
tion, we use a replaceable model called the
DataCollectionModel. Listing 5 shows the
i n t e rface for this model, which has methods to
set, get and remove values, test for the exis-
tence of a field, and allow you to register and
u n register a change listener. The listener is

automatically re g i s t e red by the JWi z a rd class
when the setModel method is called.

The Pro p e rtyDataModel is the default
implementation of our DataCollectionModel
i n t e rface. It extends the Java Pro p e rties class,
and simply stores and retrieves relevant val-
ues in a Pro p e rties object. Listing 6 shows how
the addChangeListener method adds a listener
to the listeners Ve c t o r. The fire C h a n g e E v e n t
method dispatches a ChangeEvent to re g i s-
t e red listeners. Notice that we clone the list
b e f o re iterating through the listeners so we
can avoid concurrency problems. The setVa l-
ue method puts the value into the Pro p e rt i e s
set and fires the change event. These events
a re fired only when the model changes, so the
set and remove methods are the only ones that
trigger it.

Listing 7 shows the Wi z a rd Validator inter-
face, which contains only two methods: can-
M o v e F o rw a rd and canMoveBackward. These
a re verified for the active page whenever
J Wi z a rd is notified that a change took place
in the model. Based on the response, the
Next button may be active or inactive, and
the Back button may disappear.

Paneling Wi z a rd ry
The Wi z a rdPanel class extends JPanel and

implements the Wi z a rd Validator interf a c e
(see Listing 8 for Wi z a rd P a n e l ’s source code).
The constructor lets you specify a title and/or
description for your page. These are both
optional since setting them to null ignore s
them. The title is an underlined text label at
the top of the page, and the description is a

word-wrapped text description that you
might use to explain what the user is expect-
ed to do on the page. These elements are so
common that it makes sense to keep this
functionality in the superclass. They use the
n o rth part of a BorderLayout and leave you
f ree to use the rest. Norm a l l y, you would add
a panel to the center of the page and place
your user interface elements on that panel.

The WizardPanel uses a pair of member
variables to keep track of the canMoveFor-
ward and canMoveBackward flags for the
WizardValidator interface. As a subclass,
you can change these directly at your
leisure. Also provided are a pair of utility
methods for easily accessing the DataCol-
lectionModel and SequenceManager. The
getDataModel and getSequenceManager
calls get and effectively casts the required
information from the JWizard (parent) con-
tainer.

In Practice
To put the JWizard class to use, you

need to place it in a Window or Dialog box.
Since JWizard is an extension to JPanel, you
can embed wizards into any interface, not
necessarily in a separate window. Listing 9
shows the source code for JWizardTest,
which extends JFrame and sets the size to
match a typical Microsoft Wizard; you can
resize it if you like. We then create a JWiz-
ard instance with JWizard.gif as the left-
hand image, and add the various Wizard-
Panel (extension) pages. Finally, we set the
first panel and add the JWizard reference to
the center of the Frame. The main method
creates a JWizardTest object and displays it
on the screen.

The JWi z a rd widget is a powerful tool for
developing wizards under Swing. It demon-
strates the use of several reusable interf a c e s
and a flexible design. While it may not do
e v e rything you could possibly want, you’re
f ree to extend it if needed. The foundation is
s t rong enough to apply in a production envi-
ronment. I hope it serves you well. Next
month we’ll take a look at a JComponentTre e
widget that lets you create connected com-
ponent trees with various alignment and ori-
entation choices.

About the Author
Claude Duguay has been programming since 1980. In
1988 he founded LogiCraft Corporation, and he cur-
rently leads the development team at Atrieva Corp. Yo u
can contact him with questions and comments at
c l a u d e @ a t r i e v a . c o m .

Figure 2: JWizardSequence

claude@atrieva.com

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE L ISTING ▼▼▼▼▼▼

25VOLUME: 3 ISSUE: 9 1998 •h t t p: //w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

Ad

26 • VOLUME: 3 ISSUE: 9 h t t p:// w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

Borland 19
www.borland.com 408 431-1000

Bristol Technology 75
www.bristol.com 203 438-6969

Coriolis 77
www.coriolis.com 800 410-0192

Greenbrier & Russel 25
www.gr.com/java 800 453-0347

Halcyon 35
www.halcyonsoft.com 888 333-8820

IBM 58&59
www.ibm.com 800 426-5900

IEC-EXPO 73
www.iec-expo.com 888 222-8734

ILOG 17
www.ilog.com 415 688-0200

Installshield 13
www.installshield.com 800 374-4353

Inno Val 38
www.innoval.com 914 835-3838

Keo Group 22&37
www.keo.com 978 463-5900

Advertiser Page
KL Group Inc. B/C
www.klg.com 800 663-4723

Live Softwar e 41
info@livesoftware.com 619 643-1919

Net Dynamics 79
www.netdynamics.com 650 462-7600

ObjectShar e 43
www.objectshare.com 800 973-4777

Object Matter 50
www.objectmatter.com 305 718-9101

ObjectSpace 4
www.objectspace.com 972 726-4100

Object Management Group 53
www.omg.org 508 820-4300

Progress/Cohn & Godly 21
www.apptivity.com 800 477-6473

ProtoView 3
www.protoview.com 609 655-5000

Roguewave 15
www.roguewave.com 800-487-3217

Sales Vision 47
www.salesvision.com 704 567-9111

Silverstream 83
www.silverstream.com 888 823-9700

Sockem Softwar e 65
www.sockem.com 814 696-3715

Stingray Software Inc. 2
www.stingsoft.com 800 924-4223

SunTest 11
www.suntest.com 415 336-2005

Sybex Books 63
www.sybex.com 510 523-8233

The Object People 23
www.objectpeople.com 919 852-2200

SYS-CON Publications 71
www.sys-con.com 800 513-7111

Thought, Inc. 48
www.thought.com 415 836-9199

Visionary Solutions, Inc. 50
www.visolu.com 215 342-7185

WebMethod 33
www.wbmethods.com 888 831-0808

Zero G. Softwar e 6
www.zerog.com 415 512-7771

Advertiser Page Advertiser Page

1/4 Ad1/4 Ad

27VOLUME: 3 ISSUE: 9 1998 •h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

H e re we are again, back for another look
at the underbelly of Java. Those of you that
d o n ’t know what I write about, stay tuned;
those that do, feel free to jump to the next
paragraph. Straight talking is what we do
h e re. We strip away all the hype and look
under the cover of the Java engine to see
w h a t ’s really ticking. What you’ll find here is
something you won’t read in any book or
discover in any other column. I’m not out to
win friends or butter up any company. I’m
h e re to tell the truth, and I hope to get you,
the developer, thinking and talking about
J a v a .

Each month we address a potential pro b-
lem and contrast it with a character
attribute. In previous columns we looked at
faith and trust. This month let’s go for
patience. Patience is one of those things we
all have. Some of us think we have a lot of it
until the moment we actually need it. For
example, there really should be a law against
teaching your loved ones how to drive. This
takes all the patience in the world. It’s been
said that the world would be a much better
place to live in if we all exercised a little
p a t i e n c e .

People are n ’t the only ones to suffer fro m
a lack of patience; companies are equally
g u i l t y. Pick up any magazine and you’ll
notice thousands of examples. The software
i n d u s t ry is particularly bad with patience.
I t ’s amazing that consumer confidence is as
high as it is considering the turn a round time
and life cycles of some of the pro d u c t s .
Some say it’s pro g ress; I say it’s annoying. As
soon as a product hits the shelves, a new
version or updated feature is announced.
Companies are n ’t allowing the market to
absorb the product; they’re exhibiting no
patience, always rushing to be first to mar-
ket. Let me explain.

N - A RY has recently re t u rned from To k y o .
We had the good fortune to exhibit our com-
p a n y ’s services and products at JavaExpo98.
It was the first time we’d been to Japan and
we fell in love instantly. It was amazing to
discover a city as big as Tokyo so clean and
f r i e n d l y. An advanced city as well. We all
know how well the Japanese are at con-

sumer electronics. How many of us have a
S o n y, Panasonic, JVC or some other Japan-
ese derivative in our home somewhere ?
They have this knack of taking something
and making it better – and, ultimately, small-
e r. We assumed we’d find the same level of
experience and expertise in their software. A
misplaced assumption, we’d soon discover.

We arrived preshow day and – once we
persuaded the security guard that we were
the re p resentatives from N-ARY – pro c e e d e d
to locate our wee corner booth. We walked
past Oracle’s stand. As usual, a huge impre s-
sive stage was being erected that re s e m b l e d
something from a Michael Jackson concert ,
not a computer show. I noticed something
rather strange. Of all the great things Oracle
is doing with Java, what do you think got top
billing on their stand? The JDBC driver!
W h o o p e e !

I thought this ironic, considering the
topic of last month’s column (if you missed
that one, then it’s worth getting a back issue
for the column alone!) and my grievance
with Oracle. I continued to look at the sign.
Excuse me? The JDBC driver? You come all
the way to Japan to promote the JDBC dri-
ver? Now I’m confused. We proceeded to set
up our stand to promote our servlets and
the power Java can offer on the server side.
We were also promoting our new serv e r
monitoring product, n-formant, which is
e n t i rely servlet-based. In the excitement of
setting up, we never got a chance to look any
f a rther than the two or three stands beside
u s .

Show day came, as did the general pub-
lic. Being a Java expo, we expected the
majority of people coming in would be
familiar with Java. So we prepared our
pitch on servlets and n-formant, and how
the coupling of Java at the server side
could produce an excellent solution. Warn-
ing bells started ringing midway through
the first day when we realized we hadn’t
done that much servlet talking but had
spooled oodles on Java. Being of a suspi-
cious nature, I looked around to make sure
we had set up in the right hall and hadn’t
accidentally had a stand in the neighboring

accountancy trade show. An easy mistake.
I know, I thought, let’s go and see the Sun

stand. That will put my mind at ease. I had-
n ’t been to the Sun stand at this point and
was very excited about seeing it (yes, I know,
I must get out more!). The first thing I
noticed was the big stage, stockpiled with
Sun servers. Intere s t i n g l y, they seemed to
place a lot of emphasis on their hard w a re .
Then I found the Java section. Here I went
back in time.

The world of Java is moving fast, with lots
of new, exciting APIs that allow the develop-
er to do a host of things. Those of you who
went to JavaOne this year know the sort of
exciting demos Sun had to play with. Real
eye-catching examples of where Java can be
deployed. However, we saw none of this.

Nothing of worth was on the stand that
h a s n ’t been around for years. I kid you not.
Not a single new API. The Java Web serv e r
w a s n ’t even being demoed, let alone the
s e rvlet API. Other notable absentees includ-
ed JavaPC, Media API, 3D/2D API and Beans.
Would you believe that the bean concept
was not being sold? I couldn’t believe what I
was seeing. I needed to speak to someone
h e re .

Sometime later in the day the ISV manag-
e r, To m o h i ro Yamazaki, came over and intro-
duced himself to us. After we talked for a lit-
tle I mentioned the lack of new Java technol-
o g y, noting that even Oracle was only pro-
moting JDBC. He wasn’t surprised. He said
that Japan as a whole was behind in the soft-
w a re market. We estimated around two to
t h ree years behind America. Java was expe-
riencing a slow uptake in Japan, with the
majority of developers still focusing on C++
and COBOL.

The reasons were many, ranging from the
uptake of the Internet as a whole to the cul-
tural diff e rences in the way Japanese do
business. Whatever the reasons, we saw sim-
ilar feedback. I spoke to some of the
Sun/Java server team in California when I
got back, and they had experienced the
same reaction when they gave a series of
talks on servlets earlier in the year.

At first I was shocked and couldn’t
believe how behind they were; I felt exas-
perated at what seemed a very difficult
sale. It was like selling car radios when you
have to explain the merits of owning a car

The Land of the Rising Sun
Lessons in patience

STRAIGHT TALKING

by Alan Williamson

28 • VOLUME: 3 ISSUE: 9 1998 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

in the first place. Not easy.
H o w e v e r, thinking about it all, the Japan-

ese are doing something they are re n o w n e d
for and we are n ’t: they are exerc i s i n g
patience, resisting the urge to jump on the
bandwagon and follow the crowd. But in this
case, is it a good thing?

My first reaction is no. Java is evolving
with more and more features coming online
all the time and the developers need to stay
i n f o rmed. If they don’t, then old technology
will be employed and they’ll be left behind.
But is this a bad thing?

I don’t think so. The problem is that Java
is evolving a bit too fast. How many of you
have moved over to the new 1.1 API? And
how many of you have had to redo all your
applets to work undeprecatingly in the lat-
est browsers? A large number, I suspect.
Well, can I let you in on a wee secret? We’re
about to change APIs again; be prepared for
another learning curve, another re w r i t e
and another version number. 1.2 is nearly
upon us now, and I’m left thinking, Is this it
now?

The time has come for us to say s t o p.
L e t ’s use what we have already and show the
world what Java is really all about. Some-
times I feel like an Olympic runner (sadly, I
d o n ’t look like one!) at the starting blocks;
e v e ry time I think I hear the starter gun I’m

told to re t u rn, it was a false start. Not only is
this getting on the nerves of developers, it’s
not good for consumer confidence.

We’ve approached many large client com-
panies that have plowed serious money into
CGI/Perl solutions where a Java servlet solu-
tion was more applicable. The reason they
d o n ’t use Java? It hasn’t settled down
y e t… .When it’s in version 2 we’ll look at it… .I s
it usable yet?These are just some of the com-
ments we’re getting, and I’m sure they’re
familiar to many of you as well.

Somebody at Sun has to stand up and say
s t o p. Enough. Quit bringing out new APIs and
allow us to get used to the existing one. Java
is supposed to be “write once, run any-
w h e re.” It’s more like “write once, run on
any 1.1.x JVM anywhere.” We ’ re back into
the old version number game again, and if
w e ’ re not careful it’s going to get worse
b e f o re it gets better.

Sun needs to exhibit the same patience
as Japan. It needs to hold Java back for a
number of years, and allow it time to gain a
foothold in the industry. I’m hoping this is
what they’re aiming for with the new 1.2
release, but only time will tell. Even at the
s e rver side, we need to be careful with the
version numbers. This isn’t supposed to be
how the game is played.

As developers we need to learn to walk

b e f o re we try running. We need to stop
upgrading for the sake of upgrading.
Although it’s fashionable to always use
the latest technology, it isn’t always prac-
tical. Remember the phrase used when
companies fail? They grew too big too
fast. I fear this is in Java’s future. It’s gro w-
ing too fast and isn’t allowing the industry
to catch up.

I’d like to thank To m o h i ro Yamazaki fro m
Sun (Japan) for talking to me in depth about
this whole issue. His thoughts and insight
into Japan were most welcome. We thor-
oughly enjoyed ourselves in Japan, and I
would like to thank Mayuko Hayashi for her
kind hospitality and for looking after us
t h roughout the four days.

Patience, that’s all we need to practice,
and maybe we can make the world a happi-
er place after all.

About the Author
Alan Williamson is on the board of directors at N-ARY
Ltd., a UK-based Java software company specializing
in JDBC and Java servlets. He has recently completed
his second book on Java servlets. His first book looks
at using Java/JDBC/servlets to provide an eff i c i e n t
database solution. He can be reached at
a l a n @ n - a r y. c o m .

alan@n-ar y.com

1/2 Ad

29VOLUME: 3 ISSUE: 9 1998 •h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

Ad

30 • VOLUME: 3 ISSUE: 9 1998 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

Java is unquestionably
one of the hottest devel-
opment languages to
l e a rn at this moment.
T h e re are hundreds of

books about Java, cover-
ing all diff e rent levels.

You can spend thousands of
dollars on this subject and still not get
any closer to Java nirvana. While you
could spend your money on countless
books or attend a Java class at some train-
ing center or college, MindQ offers anoth-
er excellent way to learn Java: Computer-
Based Training (CBT). Yo u ’ re pro b a b l y
thinking that CBTs are boring and you’ll
never get anything out of them. In re a l i t y,
that holds true whether you take a class
or read tons of books on the subject. CBT
simply offers an alternative. As elegant as
the Java language is, it’s very dry when
you try to learn it. MindQ does an excep-
tional job of keeping your attention glued
to the subject matter through its interac-
tive user interf a c e .

The Learning Pro c e s s
The MindQ courseware is multimedia-

enabled. It ranges from video segments of
some of the creators of Java to audio
descriptions to exercises that students
can work on to re i n f o rce what they’ve just
l e a rned. If you’re hearing impaired or just
d o n ’t want sound, there ’s an Audio Te x t
Display window that displays what’s being
s a i d .

Each CD takes between six and 12
hours to complete. Don’t feel obligated
to complete them in one sitting though.
If you want to stop in the middle of a les-
son, simply bookmark the area you’re in
and end the program. When you come
back, just go back to your bookmark and
continue where you left off. Also, it’s
designed in a hypertext format so you
can click elements on the screen to get
m o re information, just like navigating

t h rough a Web site.
As you start each course, you see and

hear an orientation of what the course is
about, and you see where it resides within
the entire curriculum. If you want, you can
skip the orientation and go right into the
lessons. Figure 1 illustrates the basis of
the user interface. On the left-hand side
a re navigation buttons. The Audio Te x t
Display window can be moved around the
s c reen if it gets in your way.

The bottom of the screen holds the
audio mute button, the pause/play button
(an indicator that animates when the
audio is playing), a slider bar to show how
many screens you need for the given topic
and a message bar. Each CD is broken into
lessons with various topics. As you go
t h rough each lesson, graphic illustrations
and animation emphasize the points. At
the end of each topic there ’s a short quiz

called “Reality Check.” The questions are
based on items discussed during the les-
son. They are either multiple choice, fill in
the blank or matching. Figure 2 is a sam-
ple of one of these quizes.

At the end of each lesson you’re given
the option to write a program, in some
cases several programs, based on a story

PRODUCT REVIEW

MindQ Java
by MindQ Publishing, Inc.

Your personal Java trainer

by David Jung

Figure 1

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼

MindQ Java
MindQ, Inc.
11490 Commerce Park Drive
Suite 400 Reston, VA 20191
Phone: 703 262-6600
Fax: 703 716-0237
e-mail: info@mindq.com
Web: www.mindq.com
Samples of course available for download

MindQ’s Java Training CDs
Essential Java Training: $795.00
Advanced Java Topics: $995.00
Developer Training for Java: $1,595.00

31VOLUME: 3 ISSUE: 9 1998 •h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

Ad

32 • VOLUME: 3 ISSUE: 9 1998 h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

p roblem and subject that was covered in
that particular lesson. The source code is
made available to you so you can study it
at your leisure .

The Curr i c u l u m
M i n d Q ’s Java courseware curriculum is

laid out as if you were attending a Java
course at a college or learning center.
They offer three packages for you to
choose from: Essential Java Tr a i n i n g ,
Advanced Java Topics and Developer
Training for Java. If you’re new to Java or
just want to learn the basics to pre p a re for
the Sun Java Certification exam, the
Essential Java Training course will pre-
p a re you. It covers all the basic subjects
of Java development, such as:
• An overview of the Java Platform
• Basic Java Language Syntax
• Java for C/C++ Pro g r a m m e r s
• Java Objects and Classes
• Advanced Java Languages
• AWT User Interface Pro g r a m m i n g

Advanced Java Topics takes you into
the Java realm where Essential Java Tr a i n-
ing leaves off. This track will teach you
the areas of Java that industry developers
use to create and maintain client/serv e r
applications. Its subjects are :
• Using the Java Foundation Classes
• JDBC and Databases
• P rogramming JavaBeans
• Java Security
• Java and CORBA
• Networking in the Java Language

The Developer Training for Java is the
complete library of Java courses, but it
also includes a few more courses to ro u n d
out the entire learning experience. It’s
b roken down into four distinct areas of
l e a rning: Fundamentals, Interm e d i a t e ,
Advanced, and Tools for Java. The Funda-
mentals section covers the first four top-
ics in the Essential Java Training course,
including a course called “Java for Man-
agers,” which is less technical but offers a
good understanding of the Java language,
its benefits and how and when to use Java
t e c h n o l o g y. Intermediate and Advanced
tracks cover the remaining topics includ-
ed in the Essential Java Training and
Advanced Java Topics tracks. The To o l s
for Java contains three courses. One, an
o v e rview of Java technology tools,
describes the various Java development
e n v i ronments on the market today with
s c reen shots of each product. It discusses
the features and benefits of each one in
detail so you can make an educated deci-
sion when choosing which product to use.
The other two courses cover Micro s o f t
Visual J++ and Symantec Visual Café for

Java, probably the most popular Java
development environments. They offer in-
depth coverage on using the two pro d-
ucts, maximizing their features to make
Java applications.

Deployment Options
MindQ offers several methods for

deploying these courses in your org a n i z a-
tion. You can run the CDs on a stand-alone
workstation, distributed over your local
a rea network or through your org a n i z a-
t i o n ’s intranet. In stand-alone mode you
can run the course either straight fro m
the CD or the local hard drive. To deploy
the courses through your network or
intranet, you’ll need to obtain a corporate
license, which includes all the courses
plus a network installation package that
allows you to choose the best deployment
option for your organization. To run the
courses over the network, your network
administrator runs the installation pack-
age, which copies the courses to a serv e r.
The files are compressed on the server to
save drive space. When a student wants to
run a course, the client package on their
workstation is started and the data
s t reams to it as if the CDs were ru n n i n g
l o c a l l y. MindQ’s streaming technology is
what allows it to run over a LAN or an
i n t r a n e t .

S u m m a ry
I was pretty familiar with Java before

reviewing these courses, but because I’m
self-taught, some aspects of the language
and environment were n ’t clear. I found

myself fascinated by the interface and
M i n d Q ’s teaching method. From a learn i n g
standpoint the lessons are well org a n i z e d .
MindQ obviously gave their curriculum a
lot of thought when they put the lessons
t o g e t h e r. The cost of each package
reflects a one-year licensing term, but the
CDs won’t self-destruct at the end of the
y e a r. Think of it as a maintenance agre e-
ment. Any updates to the product are fre e
of charge during the one-year licensing
t e rm. If you don’t re n e w, you won’t re c e i v e
any updates.

After completing these courses, don’t
expect to suddenly be a Java pro g r a m-
ming genius. That will occur over time and
after you’ve used Java for a while. Yo u
should, however, be able to sling aro u n d
the Java buzzwords with confidence and
have fairly intelligent conversations with
other Java-savvy developers. If learn i n g
Java is what you’re looking for, and you
want to learn it at your own pace without
spending a fortune on private lessons or
wading through countless Java books,
MindQ offers a great solution.

About the Author
David Jung works as a senior programmer analyst.
H e ’s a lead architect for all client/server develop-
ment. He also coauthored several Visual Basic
books, including Visual Basic 6 Client/Server How-
To and Visual Basic 6 Interactive Course (Wa i t e
Group Press). He can be reached at
d a v i d j @ v b 2 j a v a . c o m .

Figure 2

davidj@vb2java.com

33VOLUME: 3 ISSUE: 9 1998 •h t t p:// w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

34 • VOLUME: 3 ISSUE: 9 1998 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

Java Studio comes
loaded on a CD-ROM. Its
packaging also includes
an installation instru c-
tion booklet, a serial

c a rd (for re g i s t r a t i o n
purposes) and the manual,

Exploring Java Studio. It tells you about
the basics of Java Studio, and is good for
getting started. It also contains added
i n f o rmation on the examples, which are
p l e n t i f u l .

I recommend that you adhere to the
minimum re q u i rement for RAM. With 16
MB I was able to run the application;
h o w e v e r, it was unbearably slow. An
additional 16 MB would have made a
noticeable impact. On one occasion I

opened up Paint in addition to working in
Java Studio, and my system crashed. On
another occasion I was attempting to
close Java Studio and it got hung up on
one of the save windows. I attribute both
of these botches to the lack of available
m e m o ry.

It took my Pentium 133 laptop appro x i-
mately five minutes to install the applica-
tion. It follows the typical Windows instal-
lation pro c e d u re. It is very basic; there are
not a multitude of components to load
with varying configurations (custom, typi-
cal, etc.). The system took appro x i m a t e l y
35 MB of hard-drive space (with FAT32 I
expect this total will be smaller).

As with most other applications, you
can accept the suggested install subdire c-

t o ry or enter another. If the subdire c t o ry
d o e s n ’t exist, you’ll receive a prompt ask-
ing if it’s okay to create one. Now, it does
not attempt to install under the Wi n d o w s
P rogram subdire c t o ry. This is not a re a l l y
big issue, just something you should be
a w a re of.

How It Works
Java Studio is a GUI tool for cre a t i n g

applets and applications by using Java-
Beans. You can also create other Java-
Beans for use in further development.
The package includes JavaBeans that
enable you to do the basics; however, you
can add Beans that you have acquired to
expand your creation capabilities. Unfor-
t u n a t e l y, it is not made clear how this
happens.

T h e re are three interfaces in Java Studio,
as shown in Figure 1. The main window is
the top window with the title “Java Studio -
D e s i g n 1 .” The tool bar gives you access to
importing, saving files, generating (applets,
applications or JavaBeans) and customiz-
ing the tab below, among other standard
window functions.

The tab object below has tabpages for

PRODUCT REVIEW

Java Studio
Sun Microsystems, Inc.

A visual authoring tool that uses JavaBean

components to create Java applets, applications

and new JavaBean components

by Dana Crenshaw

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼

Java Studio
Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303
e-mail: webmaster@sun.com
Web: www.sun.com/studio
Test Environment:
NEC Versa 2435CD laptop
Pentium 133
16 MB RAM/1 GIG Hard drive/6X CD-ROM
Windows 95
System Requirements:
Sun’s minimal requirements include a Pentium
100 MHz computer with 32 MB of RAM and a screen
size of 800x600 min. The operating system can be
Windows 95, Windows NT or a Solaris System (SPARC
Platform Edition and Intel Platform Edition). Even
though the 100 MHz is the minimum requirement,
their recommended processor speed is 133.

Figure 1: Java Studio interface

35VOLUME: 3 ISSUE: 9 1998 •h t t p:// w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

Ad

36 • VOLUME: 3 ISSUE: 9 1998 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

the different types of components at your
disposal. The icons that appear below the
tab headings represent the list of compo-
nents for each type. For example, the
selected tab in Figure 1 is GUI. The compo-
nents listed here include Label, TextField,
Text Area, ScrollBar and Ticker Tape. Under
the Database tab you’ll find icons for
accessing a database and tables. Under the
Multimedia tab you have icons for image
map and sound player. These are only a few
examples of the many icons representing
available components. You also have the
option of adding components from your
library of JavaBeans.

The other two windows in Figure 1 are
“GUI:The User Interface” and “Design: The
Inner Workings.” The GUI screen shows
how your selected components appear in
the applet or application. In this window
you can move the components around by
dragging and you can resize them as well,

so you get live feedback about the
appearance and operation of what you’re
c re a t i n g .

The Design window depicts the relation-
ship between the components. These com-
ponents have connectors that enable you
to set the relationship for each component
to the others. Figure 2 shows a ticker tape
component. Notice the nodes on the left
side.

The nodes are called c o n n e c t o r s. The
line coming out of the top connector actu-
ally originates from another component.
It indicates that there is input coming into
the Ticker Tape component from some
other component. The Ticker Tape com-
ponent has two input parameters (re p re-
sented by the connectors). The connec-
tor with the line is for the text input,
which is displayed in a scrolling fashion.
The bottom connector is the input para-
meter for the scrolling speed. No input is
re q u i red here; the default is set in what is
called the c u s t o m i z e r. The customizer can
be thought of as the pro p e rties window.

When you put these two together, the
text field and ticker tape, you get the re s u l t
seen in Figure 3. You can see the line
drawn between the output connector of
the text field to the input connector of the
Ticker Tape. That signifies that whatever
is typed into the text field component is
fed into the Ticker Tape, where it scrolls at
the rate of speed indicated in the cus-
t o m i z e r.

Creating Things
The process of creating applets, applica-

tions and JavaBeans is a matter of selecting
components, setting the properties in the
customizer and then establishing the rela-
tionships among those components.

If you have complicated mathematical
f o rmulas, you’ll certainly want to give
thought to how this can be accomplished
graphically within the framework of what
Java Studio offers. In fact, with anything

you plan on creating you will want to give
thought to its design. While you do have
the luxury of seeing what is being created
without having to compile and run, your
logic can still go awr y.

Recommendation
Java Studio is a good product that can

be used by all levels of Java programmers.
Beginners will need to work where they
understand the components; otherw i s e
this tool won’t benefit them. While it can be
used as a learning tool, without a basic
understanding of Java components it will
be one steep learning curve.

Advanced users may find the tool by
itself to be limiting. However, with an
expanding library of JavaBeans they should
be able to overcome some of these limita-
tions.

One thing I’d like to see improvement in
is the manual. They should either expand
Exploring Java Studio or include an addi-
tional manual to give more information on
the components and how to create applets,
applications and JavaBeans. I don’t expect
them to duplicate what is already in the
marketplace in terms of Java programming,
but I do expect them to give more than
what they are currently providing.

Overall, Java Studio is a product worth
considering if you’re in the market for a
Java tool. At less than $100, it should be
v e ry attractive to both beginning- and
intermediate-level developers.

About the Author
Dana Crenshaw is a software engineer and freelance
writer. He currently works for TRW, Inc., and has
over 15 years of experience in IT. He lives and works
in the Atlanta area, and graduated from the Georgia
Institute of Technology. You can contact him with
questions or comments via email at danap@com-
puserve.com.

Figure 3: GUI and design window

Figure 2: Ticker tape component

Text Echoed

Tune in for
det a i l ed discussion of

produ cts from JDJ adverti s ers!
Java re aders vo ted #1 with their brows ers !

2 million banners delivered each month BPA
(more than all other Java media added together!)

SY S - C O N
R A D I O

37VOLUME: 3 ISSUE: 9 1998 •h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

38 • VOLUME: 3 ISSUE: 9 1998 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

A global company in the document pro-
cessing business, Xerox Corporation offers
a wide array of products and consulting ser-
vices including publishing systems,
copiers, printers, scanners, fax machines
and document management software along
with related products and services.

X e rox started the office copying re v o l u-
tion with the intro-
duction of its 914
copier in 1959. To d a y
X e rox stands poised
for the continued
expansion of the
global document
p rocessing market,
a l ready enormous at
$200 billion a year
and growing 10% a
y e a r. Including Fuji
X e rox, whose re s u l t s
a re not consolidated
in accounting state-
ments, Xerox world-
wide revenues in
1996 were $25 bil-
lion, two thirds of
which were generat-

ed outside the U.S.
In June 1996 Karen Mihara, development

manager, and Jim Johnson, chief technolo-
gist at Xerox Corporation, faced a chal-
lenge. Their task: to migrate the Xerox Peo-
pleNet, a client/server application that
serves more than 33,000 U.S. employees, to
the Web. Because Xerox PeopleNet is one of
the company’s most critical employee/man-
agement empowerment tools, the migration
would have to be seamless. Employees use
the application to access and update their
personal information, reference policy and
process manuals, review salary planning
information, submit paperwork electroni-
cally and perform workflow processes.

“One of our goals in placing Xerox Peo-
pleNet on our enterprise-wide intranet was
to move to a more productive, object-ori-
ented development environment,” says
Mihara. “We also wanted a Web-based appli-
cation to ease deployment and support of
Xerox’s installed base of Windows, UNIX
and Macintosh workstations.”

But Mihara and Johnson didn’t want to

have to start from scratch. They especially
wanted to make sure they could still use the
existing Oracle databases that contained
the proven data sources and business logic
for the client/server application. It was cru-
cial that the new Web-based application be
able to work with Oracle database technol-
ogy.

Making the Evaluation
“It was also very important that we be

X e r ox Uses Java Tool
to Cut Development

Time in Half

It decreased the
learning curve,

was easy to
debug and cut

development time
and effort in half

Visual Café

Smooths the

Transition to Java

About the Author
Cara O’Sullivan writes about business and
technology. You can reach her at caracomm@usa.net.

JClass Pure
Java GUI
Components
By Keith Schengi l i - R o b e rt s

As Java is increasingly used in corporate
computing environments, it’s important that
p r o grammers have the proper tools to build
robust applications quickly and easily. Often a
lot of effort is spent building the gr a p h i c a l
user interface (GUI), which enables the user
to interact with a program. The problem is
that many programmers feel they’re reinvent-
ing the wheel when it comes to GUI progr a m-
ming due to existing usability guidelines
incorporated into countless programs. Most
p r o grammers agree that they’d rather spend
their time working on the core application
rather than its GUI. But GUI has increasingly
been recognized as crucial, and it makes the
difference between usable and unusable pro-
grams. Designing and building the right GUI is
therefore an important part of any applica-
t i o n .

KL Group has been creating GUI compo-
nents for developers for the past nine years,
first with its series of XRT widgets for Motif
developers, then with Olectra components for
MS Windows developers and more recently
with its line of JClass Java components. KL
Group was the first to provide commercial-
quality Java GUI components, beginning with

JClass Pure
Java GUI
Components

by Cara O’Sullivan

Visual Café employed in the
migration of PeopleNet

39VOLUME: 3 ISSUE: 9 1998 •h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

able to easily migrate our developers fro m
M i c ro s o f t ’s Visual Basic, which we’d used
for the client/server application, to Java
for the Web-based application,” says John-
s o n .

Adds Mihara, “What we needed was a
Java graphical development enviro n m e n t
that closely mirro red Visual Basic and gave
us some of the same advantages. Vi s u a l
Basic was quick and easy for our develop-
ers to use for prototyping and debugging.
We needed that same functionality in a
development environment for the We b . ”

Part of the challenge for Mihara and
Johnson in evaluating Java development
tools was that at the time Java was just
emerging as an industry standard. They
w e re concerned about finding a stable
development environment that supported
Java’s still evolving features.

Mihara and Johnson looked at several
Java development tools until they found a
solution that fit their needs.

“Of all the Java development enviro n-
ments we looked at, Symantec’s Vi s u a l
Café for Java was the most stable and fea-
t u re-rich,” says Johnson. Symantec also
consistently puts out Visual Café re l e a s e s
and updates in sync with Java’s. For
developers, this was critical.

Migrating from Visual Basic to
Java-Based Visual Café

Visual Café made the transition to Java
v e ry smooth for the Xerox developers.
Visual Café allows developers to use a visu-
al development process similar to Visual
Basic and other Integrated Development
Environments (IDEs). User interfaces can
be designed by dragging-and-dro p p i n g
graphical components from a palette and
setting properties from a property editor.

Visual Café also has an Interaction Wiz-
a rd that will generate code to connect
events and methods between selected com-
ponents. Visual Basic does not generate

interaction between components.
In addition, Visual Café accommodates

developers who don’t want to use the Visu-
al design (RAD) mode. Source code can be
d i rectly edited, compiled and debugged
within Café.

Debugging
The features Johnson, Mihara and Xerox

developers now depend on include a
debugger and the software ’s ability to
debug threads and third-party components.

Visual Café provides a comprehensive
debugging environment that allows debug-
ging of applets (in Java’s Applet viewer,
Netscape Navigator or Microsoft’s Internet
Explorer).

Says Johnson, “We have been able to
debug third-party components, in-house-
developed components, multithre a d e d
applets, CORBA-based communications
and multiple applets communicating via
shared memory without any problems.”

the release of JClass LiveTable in 1996. Since
then the JClass family of JavaBeans has
grown rapidly, and has been adopted and
endorsed by leading IDE vendors including
Inprise, Symantec, IBM, Sun Microsystems,
Powersoft and SuperCede.

Since its inception at the very begi n n i n g
of commercial Java development, JClass
L i v e Table has matured and is considered a
feature-rich product. Th e
latest version, JClass
L i v e Table 3.5, is a highly
flexible and powerful way
for programmers to dis-
play and manipulate data
in tables, and now boasts
native data-binding capa-
bilities. With JClass
L i v e Table developers can
create forms, grids, tables
and multicolumn lists;
readily incorporate AWT,
JClass BWT or Swing com-
ponents in cells; and have
full control over the user’s
ability to edit cell contents
and traverse through the
table. The product also
comes with sorting and
searching capabilities, and
thanks to an innovative
technique known as JCString, progr a m m e r s
also have total control over the colors, fonts,
border styles and shading elements in a
t a b l e .

One of JClass LiveTable’s key features
that makes it flexible and applicable in a
variety of situations is its use of an MVC -
style data architecture. LiveTable’s data can

come from any object that implements the
JClass LiveTable data interface, such as an
array in memory, a file, a socket or a data-
base via a JDBC ResultSet object. Data can
be static or updated dynamically – JClass
L i v e Table’s data architecture supports Java-
Bean-style events that can be fired from the
data source to the table whenever changes
to the data occur. While JClass LiveTa b l e

comes with a number of prebuilt
data sources, its architecture
gives developers the freedom to
use LiveTable any way they want.

JClass LiveTable also gi v e s
developers flexibility in the way
tables are displayed. Using a cus-
tomizable renderer/editor archi-
tecture, the product allows devel-
opers to store the data in what-
ever format they want, and then
display it either using one of the
many cell renderers included or
with custom cell drawing code.
Cell editors can be customized
the same way, allowing develop-
ers to, for example, display
Boolean data as checkboxes, use
combo boxes or completely cus-
tomize the behavior of the table.

JClass LiveTable is also a
100% certified Pure Java compo-

nent, which makes it ideal for use in Inte-
grated Developer Environments (IDEs), and
rounds out and expands the capabilities of
the standard palette of JavaBean tools pro-
vided within most IDEs. The certification also
provides custom developers with an objec-
tive assurance that the components run
across all Java technology-enabled plat-

forms. KL Group is committed to delivering
100% Pure Java-certified components, and
the JClass BWT (short for “Better Wi n d o w i n g
Toolkit”) was in fact the first commercial
product to pass Sun’s JavaBean cert i f i c a t i o n
p r o c e s s .

KL Group’s family of Java components
continues to grow with the recent release of
JClass HiGrid, a database GUI, and JClass
DataSource, a database JavaBean. JClass
HiGrid enables developers to create, man-
age and update multilevel data-bound data-
base components, while JClass DataSource
is a powerful tool for data access, providing
a common abstraction layer for multiple
database connection techniques (such as a
JDBC URL, a JBuilder DataSet or a Vi s u a l
Café QueryNavigator instance). KL Group
has also introduced two different suites of
their popular JClass components for Java
developers: a Standard Edition containing
the basic set of JClass components and an
enhanced Enterprise Edition designed
specifically for building data-bound applica-
t i o n s .

The family of JClass 100% certified Pure
Java components and JProbe Profiler, the
first in a series of planned, advanced diag-
nostic Java programming development tools,
confirms KL Group’s goal to help profession-
al Java software developers be more pro-
ductive and reduce the cost of building
industrial strength Java applications.

About the Author
Keith Schengili-Roberts is the Webmaster for KL Group and
author of the forthcoming Advanced HTML Companion (sec-
ond edition, Academic Press). You can e-mail him at
ksr@klg.com.

40 • VOLUME: 3 ISSUE: 9 1998 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

Creating In-House
Components for Use as
Standard Objects

Also, according to Mihara and Johnson,
developers can now create their own com-
ponents and then reuse them as standard
objects across many different Java applets.

“In Visual Basic, if you wanted to reuse
code between different programs, you had
to copy the code over into the source code
for each program,” points out Mihara.
“With this software you can set up compo-
nents once, add them to the graphical tool
palette and any developer can simply drag-
a n d - d rop the components into another
applet.

“This also means that logic or compo-
nents need only be written and tested once,
which considerably shortens our testing
cycle,” Mihara continues.

For the Xerox PeopleNet Web project,
developers relied heavily on components
because of their inherent reusability and
the ability to drive implementation and
development standards. Visual Café has the
very useful feature of being able to “import”
custom components onto a development
palette.

Mihara and Johnson’s team developed
two basic types of components: (1) a wrap-
per component of third-party or standard
Java graphical or functional components,

and (2) custom
graphical compo-
nents.

The wrapper com-
ponents were imple-
mented to enforc e
look and feel, or stan-
d a rdize operational
behavior by restrict-
ing pro p e rties or
methods behaviors.
A big benefit of these
types of components
included simplifying
the development
e n v i ronment so
junior developers
could come quickly
up to speed.

Examples of wrap-
per-type components
were a table compo-
nent (the base com-
ponent was KL
Group’s LiveTable component and a CORBA
server connection class). The connection
class, which interfaces to an Oracle data-
base via Persistence Software’s PowerTier
product, was implemented in such a way
that the CORBA connection could be
shared among the various applets a user
would request during a session. The con-
nection class was implemented through the
use of a common class that utilized static
variables. A simple method from that class,
setObjectServer(), is found in Listing 1.

F u n c t i o n a l l y, the establishment of a
method like setObjectServer() has several
advantages. First, it allows a standard sim-
ple interface for developers to establish
CORBA connections. Second, it saves on
client and server resources as each applet
can share a single CORBA connection and
limit the times the CORBA connection is ini-
tiated.

The components developed for Xerox
PeopleNet Web fell primarily into the user
interface realm of the product. The light-
weight components do not use operating
system “peers,” and therefore provide a
common look across all platforms. This is
important in this case because Xerox has a
heterogeneous desktop environment and a
very large user base to support (more than
36,000 users). Examples of these types of
components include a standard applet
header, text label, custom buttons and tab
control.

Easing the Learning Curve
For Johnson, the object orientation of

Visual Café decreased the learning curve
for his developers. “You drag-and-drop the
GUI component you want, use a wizard to
connect the component’s interactions to

other objects and the software generates all
of the Java code. You can then look at the
code that was generated and learn Java
that way,” Johnson says. “In fact, not one of
our developers has any formal training with
Visual Café or Java. They’ve been able to
learn at a pace that is good for them as well
as for our schedule. And we didn’t have to
hire any new employees or bring in new
consultants.”

Mihara said she likes what she hasn’t
heard about using the software from the
developers. “With Visual Basic, the applica-
tions tended to be very difficult to debug.
Its close ties to the Windows operating sys-
tem made the applications behave differ-
ently, depending on the Windows version
and the other applications that were
installed. Things were unpredictable,” she
says. “But I haven’t heard any of our devel-
opers voice these complaints about Java
and Visual Café. When you run Java applets
in Visual Café, they’re consistent. It’s a
much more stable and consistent develop-
ment environment.”

Johnson calculates that using the tool
has cut development time in half – or more.
“Because we used Visual Café, it took dra-
matically less time for us to develop Xerox
PeopleNet,” he says.

“It's a good investment,” he continues.
“Just think about how much you pay your
developers for their time to see what Java
and Visual Café can save your company. ”

caracomm@usa.net

static XPNServer.XPN ServHelper;

static Persistence.ObjectServer OSHelper;

public void setObjectServer() throws org.omg.CORBA.SystemException

{

Common tc = new Common();

hostName = tc.getServer();

if ((OSHelper == null)) {

try {

ORB orb = org.omg.CORBA.ORB.init(myAppletInstance, null);

IE.Iona.OrbixWeb.Features.Config.setConfigItem

("IT_BIND_USING_IIOP", "true");

OSHelper = Persistence.ObjectServerHelper.bind(markerServer, host-

N a m e) ;

ServHelper = XPNServer.XPNHelper.bind(markerServer, hostName);

connection = null; //Reset Oracle DB connection

.. etc ..

} catch (org.omg.CORBA.SystemException se) { throw se; }

}

}

✦ LISTING 1.

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

Java Business Expo &
Java Developer’s Journal

Aw a rd Cere m o n y

Tune
in for LIVE

covera ge of …

O n ly from …

41VOLUME: 3 ISSUE: 9 1998 •h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

Ad

42 • VOLUME: 3 ISSUE: 9 1998 h t t p: //w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

Cold Fusion
1/2 Ad

PBDJ
1/4 Ad

6.0
1/8 Ad

CPD
1/8 Ad

43VOLUME: 3 ISSUE: 9 1998 •h t t p:// w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

Every chance I get, I lobby
for performance tools for
s o f t w a re developers,
because perf o rm a n c e
tuning is h a rd. This is
especially true in modern

object-oriented languages
like Java, as opposed to older

languages like C where the programming
model was much closer to the hardware
model. Furt h e rm o re, perf o rmance can
affect the user’s perception of your soft-
w a re. Hence, for any serious software -
development project it’s critical to have
good performance tools available to assist
the tuning efforts. OptimizeIt 2.0 Profes-
sional from Intuitive Systems is one such
tool.

OptimizeIt claims to work with most
Java 1.1 VM’s including the following:
• Sun Microsystems JDK 1.1.1 through 1.1.6
• Borland JBuilder 1.0
• Symantec Café 2.5

Test Environment
I tested OptimizeIt on a Windows NT 4.0

system with a 200 MHz Pentium, 32 MB of
memory (the minimum supported configu-
ration) and the standard Sun JDK 1.1.6
installed. I ran OptimizeIt on several Java
programs including one 200,000-line appli-
cation.

Installation and Documentation
The installation was extremely smooth

and uncomplicated. It required a mere 8 MB
of disk space for the install. No hard-copy
documentation was provided; however, the
online documentation included a user man-
ual (36 pages when printed) and a short
tutorial. Both are in HTML format and
viewed through your Web browser.

Two Tools in One
OptimizeIt actually contains two tools,

a CPU time profiler and a memory pro f i l e r

integrated into one GUI. Often, time and
m e m o ry profilers are off e red separately,
but either one by itself gives you only
p a rt of your pro g r a m ’s perf o rmance. By
including both in a single program, Opti-
mizeIt allows you to see both sides of the
c o i n .

Using the Product
After specifying the program to ru n ,

such as CLASSPATH, source path(s) and
then arguments, press the Start button in
OptimizeIt to run the target program. It can
be paused at any time to study the perfor-
mance data up to that point and then
resumed later. By default the memory pro-
filer is always enabled and collects memory
data continuously as the program runs,
although it can be explicitly disabled if you
wish. While the memory profiler is collect-
ing data, it can be viewed in real time on the
memory profile screen.

For the CPU profiler you explicitly start
and stop recording performance data. Gen-
erally, you would run the program up to the
point where you want to begin measuring
and press the Start CPU Profiler button.
Then you wait until the program has fin-
ished the operation you want to measure
and press the Stop CPU Profiler button. An
option is provided to pause automatically
before the start of the program in case you
want to profile it from the very beginning.
Unlike memory data, CPU data can’t be
viewed in real time as it’s being collected.
The CPU data becomes viewable when you
stop recording.

OptimizeIt is an interactive, live analysis
tool. As long as the program and the JVM
are live, you can get performance informa-
tion. Once the program exits, however, the
performance data is no longer available.
Hence, an option is provided to disable
exits so that even if the program calls Sys-
tem.exit(), the JVM is forced to remain alive
so you can obtain the data.

CPU Profiling Features
The CPU profiler uses statistical sam-

pling to determine how much time is
spent in diff e rent parts of your pro g r a m .
The sampling interval is 25 milliseconds
by default, but can be set as low as 5 mil-
liseconds. Timing results are presented in
a sorted hierarchical tree format that
shows the top-level methods (e.g., the
main() method in an application), their
cumulative time (time spent in those
methods plus all of their descendants)
and percentage of total time (see Figure
1). You can then click on a node to cause
it to expand and show all of the methods
it calls dire c t l y, as well as their associated
times. In this way it’s easy to “drill down”
the dynamic call graph of the pro g r a m
until you get to a leaf method. There is an
option to invert the tree so that the bot-
tom-most leaf methods are shown first
and you can “drill up” to the top-level
m e t h o d s .

This tree display is intuitive and easy to
use. Some things, however, are difficult to
see in this display. For example, it’s not pos-
sible to see all the callers and callees simul-
taneously for a given method. In order to do
this, you must switch back and fort h
between normal and inverted modes.

Also shown on the CPU profile screen is
a “hotspot” display, which lists methods
sorted by the total time spent in each one,
regardless of who called it. This is the dis-
play that clearly tells you which methods to
focus your optimization efforts on.

The really great feature about the CPU

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
Optimize it! Professional 2.0
Intuitive Systems
599 North Mathilda Avenue, Ste 19
Sunnyvale, CA 94086
Phone: 408 245-8540
Fax: 408 245-8541
Web: www.optimizeit.com
E-mail: info@intuisys.com
Requirements: Windows 95/NT or Solaris 2.4, 2.5,
2.6 with 32 MB of memory
Price: $389

Optimize it!
by Intuitive Systems

PRODUCT REVIEW

by Achut Reddy

A powerful CPU and memory profiler helps

make your Java programs run faster

44 • VOLUME: 3 ISSUE: 9 1998 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

profiler is that data can be viewed for a par-
ticular thread or thread group; there’s a
hierarchical list in the program, including
system threads (such as the AWT event
thread) and a time line for each thread that
shows when it was in a running or sus-
pended state. This alone is a useful display,
especially if your program has several
threads. You can then select a thread or
thread group from the list, and the tree and
hotspot displays will show only data for
that particular selection.

By default, the display shows real time
(CPU plus wait time); however, you can opt
to see CPU time only. This is useful for tun-
ing algorithms as it relates directly to the
number of instructions executed.

Memory Profiling Features
The memory profiler shows object allo-

cations aggregated by type. As pre v i o u s l y
mentioned, this display is continuously
updated as the program runs, showing the
c u rrent instance counts (and, optionally,
sizes) for every object type. It would have
been nice if it computed totals for you as
well. There ’s also a checkpoint feature that
allows you to set a baseline for the instance
counts. Subsequent measurements will then
show the counts relative to the baseline.
They’ll go up as new objects are allocated,
and go down again when the garbage collec-
tor frees them. There ’s an option to disable
the garbage collector, which is useful if you

wish to see the total allocations over the life
of the pro g r a m .

U n f o rt u n a t e l y, this display doesn’t
include arrays. Since arrays can account
for a majority of heap space in many pro-
grams, I found this to be a significant omis-
sion, although Intuitive promises to
include this feature in the next version.
Another feature I’d love to see is the ability
to show memory profiles by thread or
t h read group, just as the CPU profiler cur-
rently allows.

If you select an object type, you can
then go to a second screen that shows, in
a hierarchical tree format, the stack back-
traces of all the places in the pro g r a m
w h e re that type was allocated. You can go
to a third screen that shows all instances
of that type along with its values (the
value shown is the result of calling the
toString() method on the object). The
instance screen also includes a unique and
p o w e rful heap analysis feature that shows
you all incoming or outgoing re f e re n c e s
(but not both at the same time) to a given
object instance. This is valuable because,
although Java has an automatic garbage
c o l l e c t o r, it won’t collect an object if you
unknowingly keep a re f e rence even though
i t ’s no longer needed. A heap analysis tool
such as this is the only practical way to
find such memory leaks. Apart from per-
f o rmance reasons, it can even be used as a
debugging aid to inspect the connections

between your data stru c t u res and find
possible erro r s .

Other Features
• A source viewer is provided to display

source code whenever you click on a
method name, provided you compiled
the code with the -g flag.

• Printing is not supported directly, but
you can export the data into HTML for-
mat and print from your browser. You can
also export into ASCII or “importable”
ASCII formats.

• Advanced users will appreciate that a set
of API methods are provided to enable and
disable the profilers at the program level
so as to gain even finer control on the
p a rts of the program to be measure d .

Performance
OptimizeIt generally perf o rmed well

t h roughout my tests – a fact made more
i m p ressive considering it’s written almost
e n t i rely in Java. Clearly the OptimizeIt
engineers must have used the tool on
itself! I did find switching between scre e n s
a bit sluggish on my small memory (32
MB) machine, but presumably this would
be less of a problem on a larger memory
system. I ran a benchmark program to
m e a s u re the amount of overhead pro f i l i n g .
For the CPU profiler by itself, a 1.2x slow-
down; for the memory pro f i l e r, there was a
2.2x slow down. This is quite re a s o n a b l e ,
and I think most users are willing to toler-
ate it in re t u rn for quality perf o rm a n c e
data. With both profilers running simulta-
n e o u s l y, I measured a slowdown of 2.4x.
While OptimizeIt allows it, I don’t re c-
ommend running both at the same time
because the overhead of the memory pro-
filer will affect the CPU profiler and can
skew the re s u l t s .

Summary
OptimizeIt provides a CPU profiler and a

m e m o ry pro f i l e r, both of which are needed
as part of a full-perf o rmance tuning eff o rt .
I t ’s easy to install and operate. The out-
standing feature of the CPU profiler is its
ability to partition the timing data by thre a d
or thread group; for the memory profiler it’s
a heap-analysis capability that allows you to
track all re f e rences to and from a given
object instance. OptimizeIt is a welcome
addition to any Java pro g r a m m e r ’s arsenal
of development tools.

About the Author
Achut Reddy is a staff engineer at Sun Microsystems in
the authoring and development tools group, which is
currently working on Java performance issues. He can
be reached via e-mail at achut.reddy@Eng.Sun.com.

achut.reddy@Eng.Sun.com

Figure 1: The CPU profiler shows cumulative method times in a hierarchical tree.

45VOLUME: 3 ISSUE: 9 1998 •h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

46 • VOLUME: 3 ISSUE: 9 1998 h t t p:// w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

This month’s discussion warrants a
brisk walk down technological memory
lane to examine Java’s humble beginnings.
In its original incarnation Java, then called
Oak, was a language based on some of the
features and syntax provided by C++. Oak
was the result of Sun Microsystem’s mis-
sion to find a way for consumer electronic
appliances to communicate with each
other. When Oak was launched, it didn’t
take off from the ground. Then came Mosa-
ic, the Internet and the World Wide Web.
Oak changed its name to Java, a marriage
between Java and the Internet was made in
enterprise heaven – and Java’s exploits
spread far and wide. Today Java’s a lan-
guage, a platform and an enterprise solu-
tion – a phenomenon.

But has Java abandoned its initial goals?
Absolutely not. The language and the dis-
tributed enterprise computing solutions it
provides are fast gaining market share in
software for the enterprise. At the same
time, Java has also adhered to its original
objective of providing a ubiquitous plat-
f o rm and language for communication
between consumer devices. Java supports
APIs and products for electronic consumer
device communications by providing:
• versions of its virtual machine that can

run under strict memory constraints
• an operating system suited for small con-

sumer devices
• APIs that support embedded devices and

real-time operating systems (RTOS)
• tools that support software and hardware

development in the consumer device
arena

What makes Java the right choice for the
consumer device communications market?
Well, Java is inherently distributed, has rich
support for networking and multithreading,
promises the much desired “platform inde-
pendence,” and allows development in a
common high-level object-oriented environ-
ment.

This month we’ll peer into the Cosmic
Cup’s crystal ball to identify APIs and prod-
ucts defined by Sun that will further the
cause of Java for consumer devices. Please
note that while there’s a wide range of
embedded products and APIs available
from several vendors, this month’s column
focuses on those provided by Sun because
they’re base products closely linked to the
APIs defined under the scope of the Java
Platform.

Consumer Devices APIs and
Products

The APIs and products described below
support the penetration of Java into the
consumer device market. Figure 1 illus-
trates these products and APIs, and the
consumer devices they support; Table 1
provides brief descriptions. The next sec-
tion discusses the following consumer
device products and APIs:
• JavaOS
• JavaCard
• EmbeddedJava
• PersonalJava
• Personal WebAccess

• Java Embedded Server

JavaOS
JavaOS is a distributed platform that’s

optimized to run on a variety of computing
and consumer platforms without requiring
the presence of a host operating system.
JavaOS can directly execute the Java Virtu-
al Machine (JVM) across a variety of hard-
ware products, devices and CPUs.

Currently JavaOS is designed to support
three industry segments:
• JavaOS for Business: An operating sys-

tem software that leverages Java technol-
ogy to define the next step in centrally
managed thin-client computing. Its
salient features are a functionally rich
operating system for network computer
manufacturers, solutions providers and
hardware vendors; a new platform for
Java technology-based applications writ-
ten in the Java programming language;
and a network computing solution for
delivering business applications. It is a
joint venture of Sun and IBM.

• JavaOS for Consumers: An optimized
Java computing platform for consumer
communication appliances such as Web
phones, set-top boxes and handheld com-
puting devices. It’s a real-time operating
system that provides a stre a m l i n e d
implementation of the PersonalJava envi-
ronment. The product is offered by Sun.

Providing a ubiquitous platform and

language for communication

Java APIs and Products
for Consumer Devices

COSMIC CUP

by Ajit Sagar

API/Product Description
JavaOS A Java-based operating system that’s optimized to run on a variety

of desktop computing and consumer platforms without requiring a
host OS

JavaCard A Java Application Environment (JAE) that implements APIs that
enable smart-card transactions via card-reader terminals

EmbeddedJava A JAE for dedicated, embedded devices designed specifically for
severely resource-constrained environments

PersonalJava A JAE specifically designed for building network-connectable appli -
cations for consumer devices for home, office and mobile use

Personal WebAccess Offers a compact Web browser for devices that run on the Personal -
Java platform; supports Internet standards including HTML 3.2,
Frames, Tables, Cookies

Java Embedded Server A small-footprint server product for use within remote embedded
devices

Table 1: Consumer devices APIs and products

47VOLUME: 3 ISSUE: 9 1998 •h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

• JavaOS for NCs : A small, efficient stand-
alone Java application platform designed
specifically for network computers. It
enables users to log in anywhere on the
network and still use their familiar work-
spaces. This product is also offered by
Sun.

The JAEs, namely JavaCard, Embedded-
Java and PersonalJava, provide different
levels of Java operating system support
and target a range of environments from
smart cards to enterprise servers. These
three, coupled with the full-featured Java
Platform, provide the first upwardly binary-
compatible platform that targets various
segments of the enterprise today. Figure 2
illustrates these JAEs. Applications devel-
oped in the JAEs are upwardly compatible,
that is, JavaCard applications will run in the
EmbeddedJava JAE, which in turn is
upwardly compatible with the PersonalJava
JAE, which is upwardly compatible with the
Java JAE.

JavaCard
JavaCard, the JAE with the smallest foot-

print offered by Sun, enables Java technol-
ogy to run on smart cards and other
devices with limited memory. The JavaCard
API allows platform independence between
different JavaCard-enabled platforms. The
API defines the calling conventions by
which an applet accesses the JavaCard run-
time environment and native services.

JavaCard consists of a JVM, an API for
smart cards and a framework that provides
system services for smart - c a rd applica-
tions. The minimum system requirement is
16 KB of ROM, 8 KB of EEPROM and 256
bytes of RAM.

The JVM layer hides the manufacturer’s
proprietary technology with a common lan-
guage and system interface. JavaCard appli-
cations are basically Java applets. Multiple
applets may reside on a single smart card.

The JavaCard Application Environment
(JCAE) is licensed on an OEM basis to
smart-card manufacturers. Some vendors
have announced the availability of JCAE,
and the 2.0 specification was re c e n t l y
released.

EmbeddedJava
EmbeddedJava is a JAE designed specif-

ically for severely re s o u rc e - c o n s t r a i n e d
environments in the embedded device mar-
ket. It may be used to develop a variety of
embedded products.

EmbeddedJava applications run on top
of an RTOS dedicated to the embedded
device for which the product is being devel-
oped. Such applications may be ported to
other RTOSs. These products can scale
from dedicated applications limited to a

device’s ROM to complex, network-aware
devices. Some products that can be devel-
oped using this JAE are mobile phones,
pagers, process control, instrumentation,
office peripherals, and networking routers
and switches.

The API consists of a collection of con-
figurable Java classes that have been reim-
plemented for memory-constrained dedi-
cated embedded devices. The Java classes
offered by EmbeddedJava may be catego-
rized into two groups:

1. APIs derived from the core JDK classes,
usually supplied directly by Sun, or via
the device manufacturer or ISV. These
classes include those dedicated to spe-
cific applications as well as JDK classes
that are optimized to run in memory-con-
strained environments.

2. Hardware-specific classes, usually sup-
plied by the hardware vendor

In addition to the API, the Embedded-
Java JAE consists of a JVM (supplied by Sun

Figure 1: Java for Consumer Devices

Figure 2

48 • VOLUME: 3 ISSUE: 9 1998 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

or a reseller), an RTOS (supplied by a third-
party RTOS vendor) and device hardware
(supplied by the device manufacturer).

The EmbeddedJava specification is
open for public review.

PersonalJava
PersonalJava is a JAE specifically

designed for building applications for net-
w o r k - a w a re consumer devices such as
mobile handheld devices, set-top boxes,
game consoles and smart phones. It con-
sists of a JVM and a subset of the JDK APIs
including core and optional APIs as well as
the class libraries. These APIs are supple-
mented by a small number of new APIs
designed to meet the needs of network-
embedded applications. PersonalJava
shares a common core set of APIs with the
EmbeddedJava API. It also supports the
environment to run Java applets.

The minimum system requirements for a
device running PersonalJava are a 32-bit
CPU with 50+ MHz of memory, 2 MB of
ROM, 512 KB of RAM, keyboard or alternate
input devices and a mechanism for down-
loading applets.

PersonalJava is commercially available
as version 2.0.

Personal WebAccess
I discussed Personal WebAccess, a cus-

tomizable, compact Web browser for
devices running the PersonalJava platform,
in last month’s column and therefore won’t
repeat myself here.

Java Embedded Server
Java Embedded Server (also known as

Project NanoServer) is a new type of Web
server suited to the network-aware con-
sumer device market. It runs on the device
itself and manages its services.

Java Embedded Server targets embed-
ded devices, which have a wide range of
use and span several industry segments.
Smaller devices like PDAs, cell and We b
phones, routers, switches and set-top
boxes can run the Java Embedded Serv-
e r. At the same time, the server is at
home on televisions, automobiles and
manufacturing equipment as well as on
o ffice equipment like copiers and fax
m a c h i n e s .

The server is dynamic in nature. It can
be configured and customized at real time.
Services can be added and removed, built
new and even downloaded from a remote
location on the network. It consists of two
parts:
1.The JavaServer engine: Comprises APIs

for life-cycle management of network-
pluggable devices and applications. With
its very small footprint (100 KB) it pro-
vides installation, versioning, content

management, recovery and service, for
example.

2. JavaServer services: Invoked and man-
aged by the Java Embedded Server, they
include HTTP, SNMP, logging, threading,
remote administration, RMI and servlet
support. They also include services like
Mail and Fax that may be built on top of
the JavaServer services.

The Java Embedded Server is in its beta
stage and its current working name is Pro-
ject NanoServer.

For Details . . .
Links for detailed information on these

p roducts may be obtained from Sun’s
Java Web site (http://java.sun.com/pro d-
u c t s) .

This article concludes the whirlwind
tour of JavaSoft’s APIs and products that
are defined under the scope of the Java
Platform. In the last five articles our Cosmic
Cup has provided an eagle’s-eye view of the
Java world. This in no way completes the
APIs and products defined for Java. Even as
I write, new APIs and products are being
defined under the Java Platform. And sev-
eral other sectors in the industry are also
involved in defining Java, both the language
and the platform.

In future articles we’ll examine the APIs
and products developed by other industry
players involved in the Java Platform’s evo-
lution. We’ll also take a closer look at the
individual pieces of the Platform.

Cosmic Reflections
The volume and maturity of the hard-

ware environment far exceeds the progress
made by software solutions. Giving some-
thing away for free doesn’t earn the big
bucks for any company. However, giving a
language away free as a means to an end
will eventually pay handsomely. The con-
sumer devices market is massive in terms
of sheer volume. In this new computing
paradigm, combining the distributed net-
working facilities and platform indepen-
dence offered by Java with the embedded
chip market is sure to lead to a revolution
in the enterprise.

About the Author
Ajit Sagar, a member of the technical staff at i2 Tech-
nologies in Dallas, Texas, holds a BS in electrical
engineering from BITS Pilani, India, and an MS in
computer science from Mississippi State University.
Ajit focuses on networking, UI and middleware archi-
tecture development. He is a Java-certified program-
mer with eight years of programming experience,
including two in Java. You can e-mail him at
ajit_sagar@i2.com.

Ajit_Sagar@i2.com

1/3
Object
Matter

49VOLUME: 3 ISSUE: 9 1998 •h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

50 • VOLUME: 3 ISSUE: 9 1998 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

The Internet is reshaping both the busi-
ness and computing worlds, defining new
ways in which business is done and how
applications are designed and developed.
The Web allows businesses to build distrib-
uted applications that enable the sharing of
information around the world and both cus-
tomers and employees to interact directly
with business operations. Some strengths
of the Web and Internet are their ability to
p rovide uniform access to inform a t i o n
through a consistent user interface and the
capacity to allow applications to work
together across multiple platforms. The
standard technologies that make heteroge-
neous computing across a global network
possible, including TCP/IP, HTTP and CGI,
have fueled the rapid growth of applica-
tions on the Internet and intranets. Howev-
e r, as Web application functionality
expands beyond static Web sites and basic
data querying systems to more complex,
mission-critical, enterprise Web applica-
tions, the current Web technologies
become limiting factors in what can be
achieved. To take full advantage of the
Internet and the Web, a more robust, dis-
tributed-object, connection-based protocol
needs to emerge as the standard communi-
cation protocol.

The Internet Inter-ORB Protocol (IIOP)
p romises to do just that – unite objects and
applications on the Web. IIOP is an inter- O R B
p rotocol and part of the CORBA specifica-
tions put forth by the OMG (Object Manage-
ment Group). IIOP has the potential to
become the next standard communication
p rotocol on the Internet, replacing, or coex-
isting with, HTTP/CGI. It provides an object-
based protocol that could greatly enhance
the types of applications that are built and
placed on the Web. Browsers and Java appli-
cations could work together to “surf” dis-
tributed objects instead of just content. IIOP
has widespread industry support and is
becoming a common feature in application
s e rver software and middleware. Should

IIOP continue to garner support, it will
become as common a protocol on the We b
as TCP/IP and HTTP are now. This art i c l e
describes IIOP and how it could turn the
I n t e rnet into a network of distributed, inter-
operable objects.

What Is CORBA?
B e f o re diving into IIOP, you need a brief

o v e rview of CORBA. CORBA is a distributed
technology that supports access to re m o t e
objects developed in multiple languages
a c ross a variety of platforms, operating sys-
tems and networks. The CORBA 1.1 specifi-
cations spelled out the core functionality of
an ORB (Object Request Broker), and
described an IDL (Interface Definition Lan-
guage) to define objects it interfaces with.
The core of the CORBA arc h i t e c t u re is the
ORB, which is the object bus. The ORB
allows client applications to find objects and
invoke methods on them locally or across a
network. It handles passing re q u e s t s ,
responses and exceptions between a client
object and a server object. When the client
application uses an object, it doesn’t need to
know the object’s location, pro g r a m m i n g
language or type of platform because the
ORB masks these details. The ORB handles
the location of server objects in a re p o s i t o ry
that keeps this level of detail from the client.
Objects the ORB will manage need to be re g-
i s t e red so they are available to client appli-
c a t i o n s .

Objects are the software solution to a
business problem. They can be used to bet-
ter describe and implement business
processes. They’re pieces of reusable soft-
ware that encapsulate data and methods.
The object class gives the object a name
and an interface, and defines what it can do.
An object class is used to build object
instances in memory at runtime, and is
written in a language such as Java. IDL can
be used to describe the object class and
methods in a language-neutral way. IDL
doesn’t actually implement any of the func-

tionality an object will provide, but it can
be used to create proxies that make distrib-
uting an object possible. It’s also used to
mask the language used to build the object
from the client.

The client knows about server objects
and functions through the proxy or stub
generated by the IDL. A similar proxy or
skeleton is generated for the server. These
p roxies handle marshaling, masking the
fact that the object or request is remote.
The proxies also manage object references
that are used to identify a particular object
instance of an object. The stub is a stand-in
for the remote object on the client while the
skeleton is a stand-in for the re m o t e
request on the server. The proxies allow
each application to act as if the object or
request came from within its own process
(see Figure 1).

Proxies enable static calling of object
methods and require the stub to be com-
piled with the client. In addition to using
proxies, CORBA also allows clients to call
objects using the Dynamic Invocation Inter-
face (DII), which allows client applications
to call objects of which it has no knowledge
at compile time.

CORBA 1.1 outlined the workings of this
object bus, ensuring that objects written for
one ORB could be moved to another. It did-
n ’t guarantee that the ORB from one vendor
could communicate with one from another
v e n d o r. The ORB vendors were free to

It may be the next universal

Internet protocol

by Michael Barlotta

IIOP Explained

HTTP, SMTP, SNMP…all those great
four-letter acronyms name the applica-
tion-level protocols that make the Inter-
net click. In this issue Michael Barlotta
delves deeper into the details than we
usually do to explore the fast-growing
Internet protocol, IIOP, that makes
CORBA work on the Web.

Richard Soley
Editor, CORBACORNER
Chairman and CEO of the
Object Management Group, Inc.

CORBACORNER

h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m 51VOLUME 3 ISSUE 9 •

design their ORB products using any tech-
nologies and techniques they desired as
long as they were compliant with the specifi-
cations. This resulted in several incompati-
ble, pro p r i e t a ry ORB implementations. The
CORBA 2.0 specifications addressed this
c o n c e rn, providing interoperability between
ORB products through IIOP.

What Is IIOP?
CORBA 2.0 outlined a General Inter- O R B

P rotocol (GIOP) that specifies how ORB
p roducts from diff e rent vendors could com-
municate with each other. GIOP defines a
s t a n d a rd data transfer syntax and messag-
ing format over a transport protocol. It does-
n ’t specify a particular communication pro-
tocol. It’s a simple, protocol-neutral specifi-
cation that can be mapped to several diff e r-
ent network protocols. Since an ORB is con-
c e rned with maintaining object and data per-
sistence between requests, GIOP assumes
that the transport protocol is connection-
o r i e n t e d .

GIOP messages are made up of re q u e s t s
and replies in the traditional client/serv e r
model. To invoke a method, a client sends a
request to a serv e r, which waits for re q u e s t s .
On receiving one, the server processes it
and sends a reply and any re t u rn values to
the client.

The GIOP specification outlines the map-
ping of OMG IDL data types and object re f e r-
ences to a common network re p re s e n t a t i o n
known as CDR (Common Data Repre s e n t a-
tion). CDR is an over- t h e - w i re data form a t
that handles marshaling of data types, byte
o rdering and other low-level operations to
e n s u re that data is transported in a common
s t a n d a rd format so that ORB invocations
and information sent between machines on
a network mean the same thing to both
a p p l i c a t i o n s .

I I O P, a specific implementation of GIOP,
defines how GIOP messages are mapped to
the TCP/IP protocol (see Figure 2). To ensure
i n t e roperability between ORBs, CORBA 2.0

specifications dictate that all ORB pro d u c t s
must support IIOP, either natively or
t h rough a bridge. Figure 3 illustrates how a
client application can access an object on a
d i ff e rent ORB through IIOP. Without IIOP to
bridge the gap between incompatible ORB
p roducts, the client application using ORB A
w o u l d n ’t be able to access the server object
hosted by ORB B. IIOP provides a common
i n t e rface that masks the ORB implementa-
tions behind it, making each ORB appear the
same to each other.

How IIOP and TCP/IP Wo r k
Most network stacks and communica-

tion protocols are compared to the OSI re f-
e rence model when attempting to describe
the role it plays in allowing communication
between machines and applications. The
OSI re f e rence model, shown in Figure 4, has
seven layers, each with a diff e rent set of
responsibilities and its own set of APIs used
to communicate with the layers above and
b e l o w.

As a network message is received, it
moves up the stack, allowing each layer to
p e rf o rm its tasks, such as routing, erro r
checking and data marshaling. Each layer
removes any message header inform a t i o n
p e rtinent to its layer and passes the mes-
sage along to the next layer. When a mes-
sage is sent out on the network, the oppo-
site occurs. The higher up the stack a pro-
tocol rests, the more abstract it is and the
m o re low-level communication details it
takes care of. The APIs used to interact with
a protocol on higher levels mask the intri-
cate details of network messaging and mar-
shaling handled by lower layers, while the
level of abstraction between layers allows
p rotocols in the higher levels to support
several diff e rent lower-level pro t o c o l s .
Using higher-level protocols makes applica-
tion development easier and more port a b l e .
Leaving communication management to a
p rotocol frees developers to develop appli-
cation objects.

I I O P
IIOP is a high-level protocol that takes

c a re of many of the services associated with
the levels above the transport layer, includ-
ing data translation, memory buffer manage-
ment and communication management. It’s
also responsible for directing requests to the
c o rrect object instance within an ORB. An
object instance is identified by an Intero p e r-
able Object Reference (IOR), which is speci-
fied by the GIOP and generated by the ORB.
Because actual object re f e rences are han-
dled diff e rently by each ORB, an IOR is used
to pass object re f e rences between diff e re n t
ORB products. The client application can
access the object using the IOR, which
masks the client application’s ORB imple-
mentation from the ORB implementation
used to host the CORBA object.

T C P
TCP (Transmission Control Pro t o c o l)

makes up the transport layer of the stack
and is responsible for ensuring that the right
application on a machine receives the mes-
sage. It’s also charged with dividing mes-
sages into smaller packets and re a s s e m b l i n g
incoming packets. TCP uses a port number
to identify a particular server application.
Most “well-known” server applications and
s e rvices have a default port number on
which they listen for requests. For example,
80 is the default port number for an HTTP
Web serv e r. Using a well-known port number
makes it easier for client applications to find
s e rvers they are interested in connecting to.
U n f o rt u n a t e l y, IIOP doesn’t have a default
p o rt .

I P
IP (Internet Protocol) is a network layer

p rotocol that provides inter-network com-
munications and an addressing scheme: the
familiar IP addressing that’s used on the
I n t e rnet and Web. An IP address is a 32-bit
n u m b e r, usually re p resented in dotted deci-
mal notation, for example, 161.125.23.116.

Figure 1 Figure 3Figure 2

52 • VOLUME: 3 ISSUE: 9 1998 h t t p: //w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

Each part of the address re p resents a
byte of information ranging in value from 0
to 255. Depending on the class and subnet
mask used by the IP address, a portion of the
number re p resents the network ID and the
remainder identifies the host or node on the
n e t w o r k .

IIOP and HTTP
The Internet is now dominated by

HTTP/CGI applications. The Hypert e x t

Transfer Protocol (HTTP) is
the standard communication
p rotocol used by bro w s e r s
and Web servers. It allows for
the exchange of content,
such as HTML documents,
images and spreadsheets, on
the Internet. The Common
Gateway Interface (CGI)
allows Web servers to access
application programs. These
application programs are
capable of providing dynamic
content and services over the
Web, making data-driven
Web-based applications pos-
sible. In addition to CGI,
many Web server products
provide extensions to inter-
act directly with databases
and objects. Figure 5 illus-
trates typical Web applica-
tion architecture.

HTTP/CGI is a slow and
stateless protocol, however,
with several limitations that
impact how applications are
built. The limitations inher-
ent in HTTP/CGI can be
resolved using IIOP. It’s
designed to support objects
and state rather than con-
tent, making it a natural pro-
tocol on which applications
can be built, and works over

TCP/IP, helping it fit right into the Internet
and intranet environments. IIOP provides a
standard, robust protocol and, when cou-
pled with the portability of the Java lan-
guage, will eventually replace HTTP/CGI as
the model on which Web applications are
built.

IIOP has the following advantages over
HTTP/CGI:
• It doesn’t re q u i re spawning a new

instance of a program for each request.

• It supports more robust argument data
types than strings.

• It provides the ability to obtain refer-
ences to any objects on the Intern e t
defined by OMG IDL.

• It provides persistence of state between
calls.

In addition, CORBA ORB and application
server products provide dynamic function
invocation, load balancing, transaction ser-
vices and other robust features not found in
most CGI applications. Figure 6 provides an
overview of an IIOP-based Internet applica-
tion.

IIOP, Java and the Internet
The portability of the Java language and

the openness of IIOP can be combined to
create new and powerful Web applications.
Java applets can communicate with objects
via IIOP, allowing clients to access function-
ality without going through a Web server or
using CGI. Java’s portability rests on its
ability to be compiled as bytecodes, which
can be downloaded and run on a variety of
platforms and operating systems using a
Java Virtual Machine (JVM). JVM technolo-
gy, available with most browsers, makes
running Java applets and applications
accessible to every client on the Internet.
Java applet technology allows code to be
deployed and managed from a central serv-
er, downloaded over the Internet and run
on a client workstation. This enables
changes to be made to Java programs and
redeployed easily because each client
downloads the code whenever it’s needed.

Using a Java-enabled browser, a user can
enter a URL to access a company’s Web
server. The Web server can return an HTML
page and a Java applet over HTTP to the
browser. The Java applet will contain an
interface that allows the user to interact
with the application. Using the client-side
ORB, the Java applet can send requests to
objects on another server using IIOP. These
objects will be hosted by an application
server or ORB, and can provide access to
various data sources and pro c e s s i n g .
Accessing objects over IIOP instead of
HTTP allows the Java applet to take advan-
tage of the distributed object pro t o c o l ,
passing objects, various data types and
maintaining state.

Figure 7 illustrates how the browser,
Java, HTTP and IIOP can work together to
provide a solution to building Web applica-
tions, a solution made even easier because
of the support and widespread availability
of IIOP by several leading software vendors.
Netscape, Inprise/Visigenics and other
application server vendors want to make
CORBA and IIOP as ubiquitous as HTML
and HTTP are today. To make this a reality,

Figure 5

Figure 6

Figure 4

Figure 7

53VOLUME: 3 ISSUE: 9 1998 •h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

Netscape and Inprise/Visigenics are making
Java and IIOP available on the Web by
bundling their technologies. Netscape Nav-
igator 4 ships with a Java Virtual Machine
and Visigenic’s Visibroker for Java ORB,
making Java and IIOP available to every
client that uses a Netscape browser.

In addition to being widely available on
the client, application servers and ORBs
are also providing support for IIOP. The
application server is a new breed of soft-
ware that combines ORB functionality with
that of a TP Monitor and Web server. Appli-
cation servers host objects while providing
scalability, reliability and access to various
data sources in the middle tier.

Table 1 lists some of the major compa-
nies that support or plan to support IIOP in
their Web/Application server products.

It’s interesting to note that the Visibro-
ker ORB is licensed to SilverStream, Sybase,
Oracle and Netscape, and is the basis for
the CORBA/IIOP support in their products.
Sun has stopped supporting their ORB
products, NEO and Joe, and is encouraging
customers to migrate to Visibroker. In addi-
tion, Sun has announced that Java RMI will
support IIOP as well as JRMP as the under-
lying protocols. This makes Visibroker the
leading ORB solution on the Internet.

The one notable company not listed as
supporting IIOP is Microsoft, which is pro-

moting DCOM as an alternative protocol.
DCOM is not widely supported by non-Win-
dows platforms, however. Microsoft tools
and servers, including Internet Explorer, IIS
and MTS, aren’t likely to support IIOP in the
near future. ORB client software, however,
and products such as IIOP Engine by Iona,
will help client applications without
Netscape’s browsers interact with objects
on the Web. Bridges between DCOM and

CORBA/IIOP will also enable MTS and IIS to
interoperate with objects over IIOP on the
server side.

Conclusion
IIOP provides a solid basis for the

development and deployment of enter-
prise Web applications. The distributed
object support and functionality it pro-
vides go a long way in overc o m i n g
HTTP/CGI limitations. Used in conjunction
with the Java programming language,
p o rtable distributed applications on the
Web are becoming viable solutions to busi-
ness problems. Despite competition fro m
DCOM, IIOP has both industry support and
s t rong technology, making it the best can-
didate for becoming the next universal
I n t e rnet protocol.

About the Author
Michael Barlotta is vice president of business devel-
opment at MO Systems Solutions, Inc., and a CPD
associate. He has a BA in computer science from The
University of Albany (SUNY), New York. Mike is a
contributing author to PowerBuilder 6: Secrets of the
PowerBuilder Masters (SYS-CON Publications,
Inc.) and the author of Distributed Application Devel-
opment with PowerBuilder 6 (Manning Publications)
You can contact him at mbarlotta@mosystems.com.

Company Products
Inprise/Visigenics Visibroker

Netscape ONE, Netscape Enterprise
Server, Netscape
Communicator

S u n / N e t D y n a m i c s NetDynamics

IBM SOM, Component
Broker

Iona Orbix

Oracle NCA, Oracle Web
Application Server

SilverStream SilverStream 2.0

Sybase Jaguar CTS 2.0

Table 1

1/2 Ad

mbarlotta@mosystems.com

54 • VOLUME: 3 ISSUE: 9 1998 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

So there it is – the oppor-
tunity of a lifetime. It
seems that the local pub-
lic utilities commission
has allocated a hefty bud-

get to a new project. They
want to be able to “link” all

of their users in the county util-
ities building to the same database. All they
need is a good database administrator to
come in and make it happen.

This appears to be a pretty cut-and-dried
job on the surface, but when you arrive you
a re horrified to learn that all is not as it
seems. Most of the office employees are on a
Windows NT network, the engineers upstairs
need their UNIX system and, to make matters
worse, Bessie down in re c o rds in the base-
ment won’t part with her Mac. (This truly is
a government operation!)

The development of database applica-
tions that must run on many diff e rent plat-
f o rms points to one solution: Java! This is
okay if you’re a proficient Java pro g r a m m e r,
but what if you’re not? Fear not! Your pro b-
lem is solved with ROAD:BeanBox from Spe-
cialized Software Intern a t i o n a l .

ROAD:BeanBox creates Java applications
on the fly that will access data from JDBC-
enabled database servers. It contains a rich
set of data-access components and data-
a w a re user interface (UI) components imple-
mented in Java, using JavaBeans 1.0 technol-
o g y. Best of all, advanced pro g r a m m i n g
knowledge isn’t re q u i red to use it.

Installation of ROAD:BeanBox
ROAD:BeanBox runs on any JDK1.1 Vi rt u-

al Machine or bro w s e r. The actual installa-
tion pro c e d u re varies depending on the soft-
w a re that’s to be used with it. I experimented
with ROAD:BeanBox in two ways. I tried
using it with the JDK1.1.5 and then with Vi s u-
al Café.

The version of ROAD:BeanBox I used was
packaged on CD-ROM as a JAR file. When
using the product with JDK 1.1.5, installation
consisted of the following steps:

• Make a dire c t o ry on the hard drive with an
a p p ropriate name. (I called mine BeanBox,
of all things!)

• Copy the appropriate JAR file from the CD-
ROM to that dire c t o ry. In this case the file
copied is called “bbox.jar”.

• E n s u re that the CLASSPATH variable has
been modified to point to this JAR file (for
example: CLASSPAT H = % C L A S S PAT H % ; C : \
B e a n B o x \ b b o x . j a r.

A great feature of ROAD:BeanBox is that,
in addition to the JDK, it works with some
GUI-based IDEs as well. I had pretty good
results using it with Visual Café. To install
ROAD:BeanBox through Visual Café, follow
these steps:
• Make sure Visual Café is installed and

operating properly.

• Launch Visual Café.
• C reate a new project by selecting the

“Empty Project” template from the “New
P roject” dialog box.

• F rom the “Insert” menu select the option
“Component into Library. ”

• Select the bbox.jar file. Click “OPEN” to
begin import i n g .

PRODUCT REVIEW

R O A D : B e a n B o x
by Specialized Software

BeanBox’s capabilities are well worth it,

especially for beginning programmers

by Ed Zebrowski

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼

ROAD:BeanBox 1.1
Specialized Software International, Inc.
120 Staff o rd Stre e t
Wo rc e s t e r, MA 01603
Phone: 800 328-2825
Fax: 508 754-8973
E-mail: info@specializedsoftware . c o m
Web: www. s p e c i a l i z e d s o f t w a re . c o m
Price: $295 for a single-user developer license
($395 for a single-user developer license with
one-year subscription)

What’s New in Version 2.0 of ROAD:BeanBox
For Enterprise and advanced programmers, especially JDO objects

Since the review of version 1.1 of ROAD:BeanBox, Specialized Software has released version
2.0, improving the features and adding many more beans for the same low price. Some of
the important additions and improvements include:

Java Data Objects (JDO)
A complete set of data objects called Java Data Objects. JDO objects are JavaBeans that

can be independently created, allowing users the ability to track only those objects they need.
The improved client-batch cursor library and full connectionless result set allow easy migration
of data from one database to another. Direct access to stored procedures, connection pools,
improved er ror handling, cursor-enabled meta objects, database events and thread safety ar e
just some of the main features of JDO objects. JDO objects are best used in building server -
side Java applications.

Data Accessor Object (DAO)
Another key component in ROAD:BeanBox v2.0 is the Data Accessor Object bean. This

GUI bean provides easy access to data stored in databases using JDO objects. DAO features
an easy-to-use customizer to set properties and includes automatic data binding support for
AWT and JFC components, including the JTable. DAO supports bidirectional data navigation
and includes a database message-aware StatusBar, plus data-aware AWT components such
as MaskText, Label, etc.

JGrid – Sophisticated Grid Bean
A new user interface bean called JGrid presents data in a two-dimensional table format.

JGrid provides full printing support, smooth scrolling and support for multiple headers. The
JGrid design is based on the model view controller architecture. JGrid is bundled with Cell -
Renderers (Text, Image, CheckBox, RadioBox, etc.) and CellEditors (Text, MaskText, DropDown
List, Calendar, etc.).

55VOLUME: 3 ISSUE: 9 1998 •h t t p:// w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

• F rom the “Tools” menu select “Enviro n-
ment Options.”

• Switch to the “Component Palette” tab.
• Select ROAD:BeanBox from the “Av a i l a b l e

components” list and click on the “Add”
b u t t o n .

• Click the “OK” button to save the changes.

The Application Wizard: Your Key
to Quick Results

At this point I’d like to strongly re c o m-
mend the installation and use of the Applica-
tion Wi z a rd. ROAD:BeanBox seems to work
best through the wizard. To install this Wi z-
a rd when working with JDK1.1.x, take the fol-
lowing steps:
• Be sure you have properly installed

R o a d : B e a n B o x .
• Copy the file “appwiz.jar” to the dire c t o ry

you created when originally installing
R O A D : B e a n B o x .

• Change your CLASSPATH variable to point
to this file. Mine looks like this: CLASS-
PAT H = % C L A S S PAT H % ; C : \ B e a n B o x \ b b o x . j a
r ; C : \ B e a n B o x \ a p p w i z . j a r.

Installation of the Application Wi z a rd
t h rough Visual Café is much the same as it is
with the JDK:
• C reate a “BeanBox” dire c t o ry on your hard

d r i v e .
• Copy both the bbox.jar and the appwiz.jar

files to this dire c t o ry.
• Modify your CLASSPATH environment to

point to these files: CLASSPAT H = % C L A S S-
PATH%;C:\ BeanBox\bbox.jar;
C L A S S PAT H = % C L A S S PAT H % ; C : \ B e a n-
B o x \ a p p w i z . j a r.

At this point it’s necessary to create a link
to an ODBC data source with a DSN name
pointing to that source. The method used
h e re will vary depending on the database
y o u ’ re working with. To keep things simple,
I’ll run through the sample supplied with my
copy of ROAD:BeanBox. It’s a Micro s o f t
Access file named “admin.mdb.” The sample
is a good way to get a feel for this product. To
run the sample take the following steps:
• Be sure that the “Microsoft Access ODBC

driver” has been properly installed and
c o n f i g u re d .

• Copy the admin.mdb file to the BeanBox
d i re c t o ry created during installation.

• Run “ODBC” from the control panel, adding
a new Data Source sample. When pro m p t-
ed, specify the following attributes:
ODBC driver = Microsoft Access Driver
DataSource = sample
Login name = prasad
Password = doll1102
Database=C:\BeanBox\admin.mdb
(Or whatever the absolute path to the file
is on your system)

The Application Wi z a rd is initiated with
JDK or Visual Café with the same command:
java Ta b l e A p p Wi z a rd . Ta b l e A p p Wi z a rd .

If all goes well, this will bring up the wel-
come screen to the Application Wi z a rd. Click-
ing “Next,” you will then come to the login
s c reen. Here you must specify the data
s o u rce name you created during ODBC
setup. In our example, the inform a t i o n
e n t e red is:

DataSource= Sample
SubProtocol=odbc
UserName=prasad
Password=doll1102

Clicking the “Next” button establishes the
connection to the database. The “Customized
Info” screen will now display. Entering
“Employee” as Application Name will change
the dire c t o ry path to c:\employee.java. For
Application Format select the radio button
named “Single Row – Ve rtical.” Clicking the
“Next” button takes you to the “Ta b l e - C o l u m n
Information” screen. Select the table
“PRASAD.DEMO_EMPLOYEE.” This will auto-
matically change the index name to the
a p p ropriate SQL number. The Columns List
box will be filled with the columns in the
PRASAD.DEMO_EMPLOYEE table. Click the
“>>” button to select all the columns for dis-
play in the generated application. When you
p ress the “Next” button you should get a pop-
up box confirming the launch of the Vi s u a l
D e s i g n e r. The Visual Designer is used to pre-
view and/or modify the layout of the scre e n
b e f o re the code is generated. The fields can
be resized by clicking and dragging to suit
your needs. Pressing “OK” will generate the
code generation confirmation box. Then
p ress “OK.”

Now it’s time to compile the code you’ve
generated. In JDK this is done with the com-
mand javac c:\Employee.java. This class file
runs with java c:\Employee.

If you’re using Visual Café, import the gen-
erated code into the project. Set the main
class parameter of the “Project” tab to
“Employee.” You will now find the “Pro j e c t ”
tab in the “Project Options” box. Build and
execute the application according to the doc-
umentation supplied with Visual Café.

As you can see, it’s possible to create a

single table maintenance screen in a matter
of minutes. It’s also possible to cre a t e
“multiple row” single-table applications as
well as “master detail relationship” appli-
cations using ROAD:BeanBox. Although
these are a little more involved, they come
much easier and quicker than with most
other methods. This benefits the user
because it’s not necessary to take the time
to learn how to write complicated pro-
grams to access and manipulate data fro m
a serv e r. It also allows a significant re d u c-
tion in testing and configuration time.
Since the amount of code is less, the
amount of time testing and adjusting the
code is significantly reduced. The ability to
p e rf o rm database tasks with less code pro-
vides other benefits as well:
• Reduction in maintenance overhead. It’s

logical – less code equals less mainte-
nance.

• No more duplicate database connections.
R O A D : B e a n B o x ’s Connection Sharing
capability centrally manages database
connections to minimize the use of costly
database resources.

• Improved performance. Road:BeanBox is
equipped with a backward scrolling fea-
ture for static cursors. Coupled with the
batch update feature for batch cursors,
this will improve response time and
reduce network traffic.

• Scalable and extensible platform. The
user is provided with reusable classes, all
of which have specific functions. These
classes can easily be extended for the use
of many business requirements.

ROAD:BeanBox is one of the neatest
development tools I’ve seen. Although it has
a full arsenal of powerful database access
tools, you need only a very basic knowledge
of the Java programming language to use it
e ff e c t i v e l y. That alone makes it worth its
weight in gold.

About the Author
Edward Zebrowski is a technical writer based in the
Orlando, FL area. Ed runs his own Web development
company, ZebraWeb.

Figure 1: Installing ROAD:BeanBox through an IDE
like Visual Café is as easy as clicking on menu

items and selecting files

zebra@rock-n-roll.com

56 • VOLUME: 3 ISSUE: 9 1998 h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

Java servlets provide a new way to
develop server-side solutions. They pro-
vide the features of traditional CGI scripts
with the additional benefits of efficiency
and portability. Currently, major corpora-
tions are making the migration from CGI
scripts to Java servlets. As a result, the
demand for applet and servlet communica-
tion is on the rise.

In the February 1998 issue of JDJ (Vol. 3,
Issue 2), I presented a three-tier database
application that used Java servlets. In this
article you will learn how to build a three-
tier database application that allows a Java
applet to perform two-way communication
with a Java servlet. I’ll focus on the con-
cepts and techniques of applets communi-
cating with servlets, building on the appli-
cation presented in the previous article.
Don’t worry if you missed that article; a
review follows.

Reviewing Our Student Tracker
Application

The previous article presented a three-
tier database application that used Java
servlets and the Java Database Connection
(JDBC). That application allowed a public
speaker to keep track of students who
attended the seminars. Students interacted
with the application by entering their con-
tact information into an HTML form. Once
the form was submitted, the Java servlet
used JDBC to store the student information
in a database. Afterwards, an updated stu-
dent list was generated by the servlet and
returned to the user as an HTML page.

The application was partitioned into
three tiers: user interface layer, the busi-
ness rules layer and the DataStore layer.
Figure 1 illustrates the design.

The first tier is a Web browser, which
serves as our universal client. In the first
phase of the application, an HTML front
end was used for user input and to display
the database query results. The HTML
approach was taken because it lowered the

requirements of the client’s Web browser
version. This low-tech approach made the
application accessible to users whose
browsers were not Java 1.1 enabled.

The second tier of the application was
implemented with a Web server capable of
executing Java servlets. The Java servlet
harnessed the power of JDBC to access the
database to store/retrieve information as
needed. A dynamic HTML page was gener-
ated by the servlet based on the database
results.

The third tier was composed of our
back-end database server, which stores the
i n f o rmation used by the application.
Thanks to the JDBC API, however, the
s e rvlet can access the database in a
portable fashion by using the SQL call-level
interface.

Developing an Applet Front End
To enhance the student tracking system,

we will develop an applet front end. Stu-
dents can now enter their contact informa-
tion into a Java dialog box. Also, an updat-
ed student list is displayed in a Java list
component. Figure 2 shows the new applet
front end.

Applet-Servlet Communication with
HTTP GET and POST

In the previous version the HTML form
was used to submit the student’s data to
the servlet. Accessing the form data on
the server side was simple and straight-
f o rw a rd. This was accomplished by call-
ing the method HttpRequest.getParame-
t e r (< f o rm field name>), which is available
in the Java servlet API.

We are now using an applet front end
and we need a mechanism for the applet to
communicate with the servlet. We need to
capture the information a student enters
and somehow pass it to the servlet. Since
servlets support the HTTP/CGI interface,
we can communicate with the servlet over
HTTP socket connections. The applet sim-

ply opens a connection to the specified
servlet URL. Once this connection is made,
the applet can get an output or input
stream on the servlet.

The applet can send data to the applet
by using a GET or a POST method. If a GET
method is used, the applet must URL-
encode the name/value pair parameters
into the actual URL string. For example, if
we wanted to send the name/value pair of
LastName=Jones, our servlet URL would
resemble:

h t t p : / / w w w . f o o . c o m / s e r v l e t / T e s t S e r v l e t ? L a s t-

N a m e = J o n e s

If you have additional name/value pairs,
they are separated by an ampersand (&). If
we add a name/value pair of
FirstName=Joe, our revised servlet URL
would resemble:

h t t p : / / w w w . f o o . c o m / s e r v l e t / T e s t S e r v l e t ? L a s t-

N a m e = J o n e s & F i r s t N a m e = J o e

We would have to URL-encode each
name/value pair for the student’s contact
information. To send a GET method to a
servlet, the applet can use the java.net.URL-
Connection class. The code fragment below
shows you how.

String location =

" h t t p : / / w w w . f o o . c o m / s e r v l e t / T e s t S e r v l e t ? L a s t

N a m e = J o n e s " ;

URL testServlet = new URL(location);

URLConnection servletConnection = test-

Servlet.openConnection();

inputStreamFromServlet =

s e r v l e t C o n n e c t i o n . g e t I n p u t S t r e a m () ;

// Read the input from the servlet.

. . .

Once the applet has opened a connec-
tion to the URL, the input stream from the
servlet is accessed. The applet can read
this input stream and process the data
accordingly. The type and format of the
data returned depend on the servlet. If the
servlet is returning custom information, a
custom messaging protocol has to be creat-

Sending a serialized object

by Chád Darby

Applet and Serv l e t
C o m m u n i c a t i o n

JAVA PROGRAMMING TECHNIQUES

57VOLUME: 3 ISSUE: 9 1998 •h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

ed for the applet and servlet to communi-
cate. I won’t go into the details of a custom
protocol, however, as I’ll present an elegant
solution later in the article.

To POST data to a servlet, the
java.net.URLConnection class is used again.
This time, however, we must inform the
URL connection that we will send data over
the output stream. The POST method is
powerful because you can send any form of
data (plain text, binary, etc.). All you do is
set the content type in the HTTP request
header. The servlet must be able to handle
the type of data that the applet sends, how-
ever.

The code in Listing 1 shows how to send
a POST method to a servlet URL. The
details of transmitting the data are dis-
cussed later in the article.

As you can see, applets can communi-
cate with servlets using the GET and POST
method.

Communicating with Object
Serialization

In our application we want to provide a
higher level of abstraction. Instead of pass-
ing each parameter of student information
(e.g., last name, first name) as name/value
pairs, we’d like to send it as a true Java
object. Our Java application already has a
Student class that encapsulates all of the
information about a student (see Listing 2).
This information is gathered from the New
Student dialog box and a Student object is
created. When we register a new student,
we’d simply like to send the Student object
to the servlet. Upon receipt of the Student
object, the servlet would add the new stu-
dent to the database. We also want the
servlet to send the applet an updated stu-
dent list as a vector of student objects. This
will allow the applet to display the student
list quickly and easily.

You may ask how we can accomplish
this. It’s easy, thanks to Java 1.1’s object
serialization, which allows an object to be
flattened and saved as a binary file. The
values of the data members are saved so
the state of the object is in fact persistent
or serialized. The object can be loaded or
deserialized later from the binary file
with the values of its data members
intact. Object serialization is fascinating
because it frees the developer from the
low-level details of saving and re s t o r i n g
the object.

How does this relate to applet-servlet
communication? Well, object serialization
is not limited to binary disk files. Objects
can also be serialized to any output stream.
This even includes an output stream based
on a socket connection. So you can serialize
an object over a socket output stream! As
you’ve probably guessed by now, a Java

object can also be deserialized or loaded
from a socket input stream.

For a Java object to be serializable, its
class must implement the java.io.Serializ-
able interface. You won’t have to actually
implement any methods for this interface,
however, because the interface is empty.
The java.io.Serializable interface is simply a
tag for the Java Virtual Machine. We can
create a custom class as follows:

class Foo implements java.io.Serializable

{

// normal declaration of data members,

// constructors and methods

}

The following code fragment shows you
how to serialize an object to an output
stream. In this example we already have a
socket connection to a host machine and
are simply serializing the object, myFoo.

outputToHost = new ObjectOutputStream(host-

C o n n e c t i o n . g e t O u t p u t S t r e a m ()) ;

// serialize the object

Foo myFoo = new Foo();

o u t p u t T o H o s t . w r i t e O b j e c t (m y F o o) ;

o u t p u t T o H o s t . f l u s h () ;

o u t p u t T o H o s t . c l o s e () ;

Notice in this example that an
O b j e c t O u t p u t S t ream is created. This
class is responsible for serializing an
object. The object is actually serialized
when the writeObject() method is called
with the target object as its parameter. At
this time a binary image of the object is
written to the output stream. In this case
the output stream is based on a socket
c o n n e c t i o n .

This example wouldn’t be complete,
however, without code on the host machine
to read the serialized object. The next code
fragment shows you how to deserialize an
object from an input stream.

inputFromClient = new

O b j e c t I n p u t S t r e a m (c l i e n t C o n n e c t i o n . g e t I n p u t-

S t r e a m ()) ;

// deserialize the object, note the cast

Foo theData = (Foo) inputFromClient.readOb-

j e c t () ;

i n p u t F r o m C l i e n t . c l o s e () ;

An ObjectInputStream is created based
on the client’s socket connection. The
object is deserialized by simply calling the
readObject() method. But we must cast the
object to its appropriate class, in this case
the class Foo. At this point the object is
available for normal use.

As you can see, object serialization is
very straightforward and easy. Now we’ll
use the technology to pass objects back
and forth between our applet and servlet.

Sending Objects from an Applet
to a Servlet

With the information presented so far,
we can send a Java object to a servlet. In
our Student Tracking application the applet
sends a Student object to the servlet when
a new student is registered. Figure 3 dis-
plays the object interaction between the
servlet and the applet.

The code fragment shown in Listing 3 is
used by the applet to send the Student
object to the servlet. The applet is actually
sending a POST method to the servlet. This
client-side code fragment opens a URL con-
nection to the servlet URL. We inform the
servlet connection that we’re sending out-
put data over the connection and receiving
input. Other methods are called so the con-
nection will not use cached versions of the
URL. An important call in this code frag-
ment is setRequestProperty(). This method
sets the content type in the HTTP request
header to the MIME-type application/octet-
stream, which allows us to send binary
data, in this case our serialized Student
object. The next couple of statements cre-

Figure 1: Three-tier design

58 • VOLUME: 3 ISSUE: 9 1998 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

ate an ObjectOutputStream that actually
writes the object to the connection stream.

We ’ re not finished yet. Recall that our
application is in the process of registering a
new student. The servlet has to read this
student object and update the database
a c c o rd i n g l y. Thus we need code on the serv-
er side to receive a serialized Student object.

The code fragment in Listing 4 displays
the servlet code for reading a Student
object from an applet. The servlet handles
POST methods by implementing the
doPost() method and acquires an ObjectIn-
putStream from the requesting applet. From
there it is simply a matter of reading the
Student object from the stream. At this
point the Student object is loaded and avail-
able for registration in the database. Please
note the small number of statements on the
s e rver side for reading in a serialized
object. You have to agree it’s quite simple
and straightforward.

Sending Objects from a Servlet
to an Applet

The servlet in our Student Tracking appli-
cation is now capable of receiving a student
object and registering it in the database.
Now the servlet has to re t u rn an updated list
of re g i s t e red students that is then re t u rn e d
as a vector of student objects. This interac-
tion is also illustrated in Figure 3.

When the servlet returns the vector,
there’s no need to iterate through the vec-
tor and serialize each Student object indi-
vidually. The servlet can serialize the entire
vector in one step since the class
j a v a . u t i l . Vector also implements the
java.io.Serializable interface.

The code fragment shown in Listing 5 is
used by the servlet to send a vector of Stu-
dent objects to the applet. The sendStu-
dentList() method is passed to an HttpRe-
sponse parameter and a vector of Student
objects. Since the applet initiated the
HttpRequest, the servlet can respond to the
applet by using the HttpResponse parame-
t e r. Thus an ObjectOutputStream to the
applet is created based on the HttpResponse
object. The student vector is actually serial-
ized and sent to the vector with a call to out-
p u t To A p p l e t . w r i t e O b j e c t (s t u d e n t Ve c t o r) .

As we’ve seen before, code is needed by
the applet to handle the data sent from the
servlet. The applet uses the code fragment
shown in Listing 6 to read in a vector the
Student objects from the servlet. The
applet opens a URL connection to the
servlet’s location. Appropriate methods are
called to ensure that the applet doesn’t use
cached versions of the URL connection.
Next, an ObjectInputStream is cre a t e d
based on the servlet’s input stream socket
connection. All the switches have been
flipped now and we can easily read in our

Figure 2: Student tracker applet

Figure 3: Applet-servlet object transaction

59VOLUME: 3 ISSUE: 9 1998 •h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

vector of Student objects. Again, remember
that we have to cast the object to the
appropriate type.

Congratulations! You’ve successfully
read in a vector of student objects. This
vector is now available for refreshing the
AWT List component.

Conclusion
This article goes beyond the normal

method of sending name/value pairs over
the HTTP/CGI protocol. The techniques
presented leveraged the features of Java
object serialization, providing an elegant
way to transmit serialized Java objects over
network connections.

I must inform you, however, that this art i c l e
discussed communication using the HTTP/CGI
p rotocol only. There are a number of other
mechanisms for applets to communicate with
s e rv e r-side processes – Java’s Remote Method
Invocation (RMI), for example.

RMI allows a client application to call
methods on a remote object as if the object
was local. In fact, RMI uses object serializa-
tion to pass objects back and forth between
the client application and the re m o t e
object. All the low-level details of network
connections and serialization are hidden
from the developer using RMI. If your pro-
ject re q u i res a large amount of applet-
s e rvlet communication, I’d re c o m m e n d

that you take a close look at RMI and the
features it has to offer.

The second mechanism of communicat-
ing with serv e r-side process is CORBA (Com-
mon Object Request Broker Arc h i t e c t u re) .
Like RMI, CORBA allows you to make
method calls on remote objects. If you have
legacy serv e r-side code written in a diff e re n t
language, you can wrap it as a CORBA object
and expose its functionality. CORBA pro-
vides a rich framework of services and facil-
ities for distributing objects on the network.

By now, you should understand the con-
cepts and techniques for communication
between applets and servlets. If you’d like
to get more information on distributed com-
puting with RMI and CORBA, visit the We b
sites listed below. In this article I demon-
strated how an applet uses a POST method
to send a serialized object to a servlet. The
a p p ropriate serv e r-side code for the serv l e t
was provided for reading in a serialized

object. Our Student Tracking applet used
this communication method to send a tru e
Java object to a servlet. The servlet was
also enhanced to re t u rn a vector of student
objects to the applet. Likewise, the appro-
priate applet code was provided for re a d i n g
in a vector of student objects.

As you can see, applet and servlet com-
munication is straightforw a rd with the
techniques presented in this article. You
can now add an applet front end to your
servlet-based application.

URL References:
Remote Method Invocation (RMI):
www.javasoft.com/products/rmi
CORBA: www.omg.org
Student Tracker Source Code: www.
j-nine.com/pubs/applet2servlet

About the Author
Chád (shod) Darby, a Java consultant for J9
Consulting, specializes in developing server-side
Java and database applications. You can e-mail him
at darby@j-nine.com.Carnegie Mellon University.

1/4 Ad

“ Java’s object
serializat ion allows

an object t o be
f lat t ened and saved

“ Java’s object
serializat ion allows

an object t o be
f lat t ened and saved

darby@j-nine.com

TUNE IN TODAY !TUNE IN TODAY !
Hear Live Interv i ew s

with the Major
Te c h n o l o gy Ve n d o r s

from the Java
Business Expo at

w w w. S Y S -CON . c o m

SYS-CON
Radio Host
Robert Diamond
with Bill Carson
of ServerLogic

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

60 • VOLUME: 3 ISSUE: 9 1998 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

JDJ Online

61VOLUME: 3 ISSUE: 9 1998 •h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

ine Spread

62 • VOLUME: 3 ISSUE: 9 1998 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

KL Group Launches
New JavaBeans for
the Enterprise
(Washington, DC) – KL Group,
Inc., has announced the release
of JClass 3.5, a new version of
its popular family of JClass Jav-
aBeans providing powerful new

databound components.
Automatic databinding
is now built into many

of the JClass compo-
nents, and this
release intro-
duces an Enter-
prise Suite and
two new Jav-
aBeans, JClass
HiGrid and JClass

DataSource, that let
Java developers build

complete database applica-
tions without writing a single
line of code.

For more information, visit
KL Gro u p ’s Web site at
w w w.klg.com, or call Lee Garr i-
son at 416 594-1026, ext. 545, or
e-mail him at lee@klg.com.

Sun and IBM
Introduce JavaOS
(Palo Alto, CA) – JavaOS for
Business operating system soft-
w a re is available from Sun and
IBM. This product provides an

economical way for companies
to centrally manage business
applications using Java tech-
nologies in network computing

e n v i ro n m e n t s
The two companies also

announced related JavaOS for
Business support programs for
i n d u s t ry partners, including a
full spectrum of software tools,

testing facilities and edu-
cational assistance, to
enable them to build net-
work computing business
s o l u t i o n s .

JavaOS software is
specifically designed so
that companies can cen-

trally store and manage appli-
cations used to run their busi-
ness (such as inventory man-
agement or insurance claims

p rocessing) from servers on a
network. The servers can be
connected to network comput-
ers and other thin clients such
as kiosks, ticket machines and
remote term i n a l s .

JavaOS for Business pro-
vides advantages over person-
al computer operating systems
on networks because it
enables businesses to manage
the entire operating system,
s e rvices and applications fro m
a centralized serv e r.

For more information, contact
IBM at www. i b m . c o m / j a v a / j a v a o s
or Sun at www.sun.com, or contact
Datek at www. b a t a v i a . c o m .

NetObjects Releases
NetObjects BeanBuilder 1.0
(Redwood City, CA) – NetOb-
jects, Inc., has announced that it
will brand, market and distribute
the next version of IBM’s sub-
s i d i a ry Lotus Development Cor-
p o r a t i o n ’s BeanMachine as
NetObjects BeanBuilder 1.0. The
p roduct enables site builders
and Web developers to rapidly
assemble and deliver JavaBeans-
based Web applications by
working in a visual, point-and-
click environment, without any
p ro g r a m m i n g .

For more information visit
www.netobjects.com.

Schlumberger Announces
Smart Card
(Austin, TX) – Schlumberg e r
S m a rt Cards & Te rminals has
i n t roduced its most powerf u l
member in the Cyberflex family
of smart cards. Cyberflex Open
16K doubles
the amount
of memory
available for
a p p l i c a t i o n
s o f t w a re .

Its new fea-
t u res also include
a PC/SC interface and fully inte-
grates an application pro c e s-
s o r, a smart card and a smart
c a rd manager.

S c h l u m b e rger has the only
Web-based smart card support
p rogram, with a user discus-
sion forum at
w w w. c y b e rflex.slb.com.

For more information visit
S c h l u m b e rg e r ’s Cyberflex We b
site at www. c y b e rf l e x . s l b . c o m
or www.slb.com, or call Michele
B e rn h a rdt at 408 501-7145.

(Kuala Lumpur) – Datek has
announced the first Enterprise
S o f t w a re Solution written to
S u n ’s JINI standard for distrib-
uted computing. Datek is the

first Java software developer to
p a rtner with Sun for its newly
launched JINI program. JINI
allows computers and devices
to have more intelligence in
communicating and sharing
with other computers across a
network, including those that
use diff e rent operating sys-
t e m s .

Madura, Datek’s flagship

ERP and supply chain manage-
ment (SCM) p rogram, has been
released with complete general
ledger and systems administra-
tion modules. The pro g r a m
emphasizes project accounting,
i n v e n t o ry tracking and job cost-
ing that allows corporations to
know precisely their profit and
cost of doing business for any
customer or pro j e c t .

Datek and Sun are ready to
deliver on the notion of the
“ I n t e rnet appliance,” making
computers and networks as
ubiquitous and easy to use as
consumer electronics devices.

For more information contact
Kamaralzaman Tambu at 603
456-2617 or by e-mail at
t a m b u @ p c . j a r i n g . m y. Or visit
S u n ’s site at www. s u n . c o m .

Datek Delivers
on Sun’s

JINI Pro m i s e

(Herndon, VA) – MindQ Pub-
lishing, Inc., a Knowledge Uni-
verse Company, has
announced that IBM will bun-
dle its tutorial package,
“Introduction to
VisualAge for Java
and Programming
JavaBeans,” with
IBM’s new release
of VisualAge for
Java 2.0. The tutorial
features instruction that
will enable developers to
get the most out of VisualAge
for Java’s visual, team-cen-
tered, enterprise application
development environment. It
also includes a full tutorial on
creating and using JavaBeans.

MindQ’s “Developer Train-

ing for Java” curriculum uses
an interactive, multimedia
training system designed to
address diverse learning
styles. It was developed by
Java experts to meet the spe-
cific needs of beginners as
well as the advanced users.
“Essential Java Training” pro-
vides what a developer needs
to learn the fundamentals of

Java programming and pre-
pare for Sun’s Java certi-

fication. “Advanced
Java Topics,”
designed for devel-

opers who want to
become experts in
Java, contains com-

prehensive code samples
and reference material on

topics like JavaBeans and
Java APIs.

For more information, call
MindQ at 800 646-3008 or visit
their Web site at
www.mindq.com. IBM’s Web
site is at www.ibm.com.

MindQ Offers
E d u c a t i o n a l

Tu t o r i a l

63VOLUME: 3 ISSUE: 8 •h t t p:// w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

Ad

64 • VOLUME: 3 ISSUE: 9 1998 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

ObjectSpace
Announces Voyager Pro 2.0
(Dallas, TX) – ObjectSpace has
introduced Voyager Profession-
al Edition, the next generation
of widely adopted standards
neutral, 100% Pure Java soft-
ware development platform for
distributed object computing.

Vo y a g e r P ro combines the
power of mobile autonomous

agents and
re m o t e

method invo-
cation with

dynamic CORBA and
RMI compatibility – pro-

viding in a single code base the
first-ever seamless support for
the most widely used distrib-
uted object models.

D e v e l o p e r ’s can re m o t e -
enable Java classes without
modification and can write a
single line of code to dynami-
cally CORBA-enable Java
objects at runtime without
modification. The product pro-
vides fast and efficient delivery ;
rich messaging; a multilayere d ,
scalable arc h i t e c t u re; and
mobile autonomous agents and

Dynamic Aggre g a t i o n .
For more information, visit

ObjectSpace’s Web site at
www.objectspace.com, or call
972 726-4100.

BulletProof Announces
JDesignerPro 3.0
(Los Gatos, CA) - BulletProof
Corporation introduces a new
visual server-side application
builder, which includes new
features such as the Method
Explorer, that facilitate the
development of Java modules
for server deployment.

The Explorer graphically

shows the breakdown of Java
classes. With existing tools
developers waste time trying
to determine the structure of a
Java class file. BulletProof’s

new tool allows a simple graph-
ical view, eliminating the need
to manually browse through
source code to understand
which methods called which
global variables, accessors and
other methods.

JDesignerPro also includes
the new SQL Wizard, which
allows developers to add SQL
statements to code with a few
mouse clicks – resulting in
flawless sytax.

For more information, visit
BulletProof’s Web site at
www.bulletproof.com.

CocoBase Enterprise 2.0
Available from Thought
(San Francisco, CA) –
Thought Inc. has
announced expanded fea-
tures of database access
framework with
CocoBase Enter-
prise 2.0. To make it
even easier to create an appli -
cation that ties to your data-
base and is high-performance
and scalable, the CocoBase
Enterprise Framework now
includes:
• State-of-the-art object model-

ing tool Together/J, which
can generate all of the data-
base connection code auto-
matically

• Polymorphism support for
custom instantiation facto-
ries on select() and call()

methods for relational data-
bases

• Automatic configurable
shared server-side object
caching to optimize and
increase performance

• Revised documentation
For more information visit

Thought’s Web site at
www.thoughtinc.com.

Industry Leaders Bundle
Zero G’s InstallAnywhere
Now!
(Irvine, CA) – ObjectShare will
bundle Zero G’s InstallAny-
where technology with upcom-
ing releases of PARTS for Java
products. In addition, Apple,
IBM and Inprise will also bun-
dle the product.

O b j e c t S h a re will also
extend its current “Delivery
Assistant” capabilities to send
files to InstallAnywhere pro v i d-
ing a total development-to-
d e l i v e ry solution.

InstallAnywhere Now! lists
at $149, and is available free to
all registered PARTS for Java
users. For more information,
visit www.objectshare.com.

(Summit, NJ) – Data Repre-
sentations, Inc., has
announced version 1.1 of Sim-
plicity for Java. The product
is written completely in Java
and lets developers build
Java applications and applets
interactively. Simplicity pre-
sents the user with a working
model of the
actual applica-
tion that they’re
creating. All
changes to the
code are immedi-
ately integrated
into this working

model without the user need-
ing to save and compile the
changes. This dynamic execu-
tion reduces the traditional
three-step code-compile-test
software development
process to a single step:
design.

For more information, call
Carl Sayres at 908
918-0396, fax 908
918-0397, email
carl@datarepresen-
tations.com, or
visit their Web site
at www.datarepre-
sentations.com.

Simplicity for Java Introduced

(D e n v e r, CO) – Inprise Corpo-
ration has entered into an
alliance with Sun Micro s y s-
tems, Inc., to team Inprise’s
development technologies
with the Sun Solaris operating
e n v i ronment. Corporations
will be able to take advantage
of Inprise’s familiar and graph-
ically appealing tools for build-
ing and running enterprise
applications on the robust and
scalable Solaris operating envi-
ro n m e n t .

Inprise also
released JBuilder 2
earlier this year. It
allows corporations
to use the latest
100% Pure Java tech-
nologies (including
JDK 1.1.6 and
JFC/Swing) to rapidly
c reate platform - i n d e-

pendent business applications.
The high-end version of the
p roduct, JBuilder 2
C l i e n t / S e rver Suite, includes
s u p p o rt and integration for
multiple JDKs, application
deployment, Enterprise Jav-
aBeans, Java Serv l e t s ,
JFC/Swing components,
CORBA and high-pro d u c t i v i t y
coding Wi z a rd s .

For more information, con-
tact Inprise at www. i n p r i s e .
com or visit Sun’s Web site at
w w w. s u n . c o m .

Inprise Joins Sun

65VOLUME: 3 ISSUE: 9 1998 •h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

66 • VOLUME: 3 ISSUE: 9 1998 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

I t ’s 1998 and everyone is rushing to get to
market and deliver Java-based application
s e rvers. The market is heading toward devel-
opment environments tightly integrated and
coupled with application servers. It’s like a
gold rush to capture the leadership positions
with the right solution.

Indeed, the hard w a re, database and tool
vendors are all in the running, throwing their
significant weight behind the marketing and
development of these pro d u c t s .

Imagine for a moment the short list of the
top database vendors: IBM, Oracle, Sybase,
I n f o rmix, Pro g ress and Microsoft. Only the last
member has yet to emerge with or announce
plans for a Java-based application server plat-
f o rm. Microsoft, of course, wants nothing to do
with Java on the server (the subject of a sepa-
rate column).

These and other less notable vendors have
realized that a tool or database won’t pre s e n t
the solution. That might have been the case in
good old GUI client/server days, but not with
networked, serv e r-centric applications con-
ceived today. In terms of deployment licensing
potential, the application server of tomorro w
is roughly equivalent to the database server of
y e s t e rd a y.

The database vendors are rushing to pro-
vide application servers purposed for Java

and Internet apps, and weaning their cus-
tomers. The tool vendors are adding
a p p s e rvers – from wherever they can find
them – to their tools. Startups involved in the
s u rge of Java development environments are
reinventing themselves as appserver compa-
nies. It appears that anyone selling Java is talk-
ing about “application server” somewhere in
their glossy type.

S m a rt customers, or prospects, to be
m o re precise, are demanding: Open Platform
Application Server; the ability to CHOOSE
the ORB of choice; services such as Tr a n s-
action Service (JTS) that can be coupled
with the AppServer; IIOP protocol so that
security layers can be added from third
p a rty; adaptive clients ranging from HTML
to full-blown Java applications; components
on the application server; and RAD enviro n-
ments for development of client/server logic
and components.

T h e re ’s a veritable army of developers
(consultants, IS types, VARS), and they’ve been
sweating it out trying to build Internet applica-
tions with VI, EMACS and general-purpose
tools. They’ve tried to deploy without applica-
tion servers and failed. Many have tried to sew
disparate client and server processes together
and failed once again. They’re ready for the
p romised land!

In effect, the movement of products being
sold provides one with a mirror of what the
developers are doing (and not doing) with
Java and Internet applications.

In early 1997 all we had were lots of cheap
Java tools (so-called IDEs). The Apptivity
s t a rtup was the first on the scene in the
spring of 1997 with an integrated develop-
ment/deployment solution that included a
100% Java application server and pro f e s s i o n-
al developer-oriented integrated RAD tool. At
that time what was available on the market
w e re inexpensive Java IDEs, the kinds that
had three settings: type code, compile code
and run code – a sort of Flintstones-type
a p p roach to the new breed of three-tier sys-
tems development!

Later on, circa winter 1997 (decades later
in Web time), we saw a crop of application
s e rvers for sale. Most were pro p r i e t a ry exten-
sions of older products but a few new tre e s
re p resented the above list of desire d
a p p roaches. Unfort u n a t e l y, a cart not
attached to a horse is of little value. An
a p p s e rver never truly attached to a compre-
hensive tool for development presents a seri-
ous challenge to the overall equation for suc-
c e s s .

And here we are in the middle of the curre n t
rush. Some of the products in the market now
o ffer incredible pro d u c t i v i t y, strong serv e r-
side application logic support and the ability to
aim for Internet application – and win big. This
allows the “mere mortals” out there to become
successful within a reasonable time in the
deployment of intranets, extranets and Inter-
nets. Now, if these mortals could just get past
their Y2K problems for a few moments!

The Application
S e rver Gold Rush

by Java George

Java George is George Kassabgi, director of
developer relations for Progress Software’s
Apptivity Product Unit. You can e-mail him at
george@apptivity.com.

THE GRIND

“The advances in Java
technology have made it

easy for almost anyone to
‘pan’ for Java’s gold”

George@sys-con.com

Childish Art i c l e
I have never seen a more arro-
gant, uninformed, ignora n t ,
childish article such as this one.
You ought to be ashamed of
yourself to even publish such
g a r b a g e .
Frank Calfo
l c a n d i a n i @ p s a t e a m . c o m

Leading with GUI
Having just read “The

Grind” in Vol. 3. Issue 7 I felt the
need to get an explanation from
the source.

In your article, you contend
that there has been little or no

improvement in user efficiency
and learning curve with the
advent of the GUI. Are you seri-
ous? I would suggest that the
GUI is responsible for moving
the silicon chip from science labs
and advanced think tanks to the
tune of some 80 million homes
in America .

If folks still had to contend
with cryptic codes, isolated
a p p l i cations, lack of drag and
drop, etc., most of the Java
developer community would be
out of a job. It’s the GUI which
led to such a boom in the Inter-
n e t .

While I grant that many of
the advances have been made as
a by-product of the GUI, there’s
no question that GUI led the
w a y. I’ll agree with your asser-
tion that early in GUI develop-
ment the tools and methodolo-
gies were cumbersome and
expensive, but not any more.

Today an entry level pro-
g rammer can create an intuitive
and familiar interface without a
single line of code. While it may
not be an enterprise applica t i o n ,
it’s a first step.
Todd Freeman
t f r e e m a n @ f i l e n e t . c o m

Reader Feedback to GUI Client/Server vs Java-Internet/Web Paradigms◆

◆
◆

◆
◆

◆

◆
◆

◆
◆

◆

◆
◆

◆

h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m 67VOLUME:3 ISSUE:8 •

Ad

68 h t t p://w ww. J a v a D e v e l o p e r s J o u rn a l . c o m

Full Page Ad

• VOLUME: 3 ISSUE: 9

